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Two-stage problems

Convex case

A two-stage linear program is

min ¢f z + Q(z)
z 2.00
s.t. Az =10b; 75
x =0, 1501
1.25

where the cost-to-go function is
1.00 4

Q(z) = min c'y 0751
Yy 0.50

st. Axr+ By=5» 0954

y=0. 0.00

Figure: Example of cost-to-go.
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Two-stage problems

Non-convex case

A two-stage mixed integer linear program is

min ¢f z + Q(z)
xX
s.t. Az =10b;
T =0,

where the cost-to-go function is

Q(z) = min c'y

Yy
st. Axr+ By=5»
y=0

y e R™ x ZF.

0.50 1
0.25 1

0.00 4

Figure: Example of cost-to-go.
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Stochastic programs

Future is uncertain

Cost-to-go @): random function.

o Uncertainty & = (¢, A, B, b): 1.0

0.54 // //
Q(Sﬂaf) = m;n CTy 007 , . / .\f'/ , ,
S.t. 1437 + By _ b -3 -2 -1 0 1 2 3
y=0
yeR" x ZF, Figure: Random cost-to-go.
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Stochastic programs

Future is uncertain

Cost-to-go @): random function.

o First stage:

4.0
. T 3.5
min ¢; z + E[Q(z, )] i,
= 3
s.t. Aiz=0b 25
z = 0. 2.0
1.5
o Uncertainty & = (¢, A, B, b): 1.0
0.5
Q(%f) = min CTy 0.0
Syt Az + By =b S
y=0
y e R" x ZF. Figure: Expected cost-to-go.
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Average of non-convex functions

What is a characterization of the expected cost-to-go?

Question J

@ Average of convex functions is convex.

@ For non-convex functions:
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Average of non-convex functions

What is a characterization of the expected cost-to-go?

Question J

@ Average of convex functions is convex.

@ For non-convex functions: it may also be!

AN/
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Non-convexity reduction

Uniform noises

Original function and distribution Average function
2.01 r2.0
1.5 1 rl.5
1.0 1 A r1.0
0.5 1 r0.5
0.0 1 : : r0.0
-2 0 2 -2 0 2
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Non-convexity reduction

Uniform noises

Original function and distribution Average function
2.01 r2.0
1.5 1 rl.5
1.0 1 A r1.0
0.5 1 \ f r0.5
0.0 1 : : r0.0
-2 0 2 -2 0 2
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Non-convexity reduction

Gaussian noises

Original function and distribution Average function
2.01 r2.0
1.5 1 rl.5
1.0 1 A r1.0
0.5 1 r0.5
0.0 1 : : r0.0
-2 0 2 -2 0 2
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Non-convexity reduction

Gaussian noises

Original function and distribution Average function
2.01 r2.0
1.5 1 rl.5
1.0 1 3 A f r1.0
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Measuring the non-convexity of a function

How to rigorously measure the non-convexity of a function?

Question J
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Measuring the non-convexity of a function

Question

How to rigorously measure the non-convexity of a function?

Idea

A natural approach is to consider the gap between it and its convex
relaxation!
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Measuring the non-convexity of a function

Convex relaxation

o Let f be a function. Lo

0.8
0.6
0.4+

024 —
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Measuring the non-convexity of a function

Convex relaxation

o Let f be a function.

@ Its convex relaxation f is
the largest convex function
everywhere less than f.

0.8

0.6

0.4

0.24
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Measuring the non-convexity of a function

Gap function

@ Define: gap(f) = f — jY;
@ Notice: the gap is identically zero if and only if f is convex,

e gap(f) is always non-negative;

Graph of f and f Gap function
1.5 1 — gap(f) r1.5
1.0 r1.0
0.5 r0.5
— f
0.0 1 ! r 0.0
-2 -1 0 1 2 -2 -1 0 1 2
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Measuring the non-convexity of a function

Gap comparisons

@ We can say that f is less non-convex than g if

gap(f) < gap(g)-

Non-convex functions Gap functions
51 Fb
41 r4
31 r3
2 A r2
11 rl
0 Fo
-2 0 2 -2 0 2
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Measuring the non-convexity of a function

Gap comparisons

@ We can say that f is less non-convex than g if

gap(f) < gap(g)-

@ But their gaps may not be comparable...

Non-convex functions Gap functions
5] L5
41 r4
31 r3
21 r2
1 rl
0 ro
-2 0 2 -2 0 2
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Measuring the non-convexity of a function

Monotone norms

@ Solution: project on R using a norm |||

@ Requirement: preserve gap comparisons,

gap(f) < gap(9) = llgap(f)[| < [[gap(9)]| .
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Measuring the non-convexity of a function
Monotone norms

@ Solution: project on R using a norm |||

@ Requirement: preserve gap comparisons,
gap(f) < gap(g) = |lgap(f)| < [lgap(9)]-
Definition
A function norm ||-|| is monotone if for all g, h > 0,

g<h = lgl <l

Examples: The uniform norm, all p-norms...
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Interlude: notation for random functions

@ Random variable: €.
e Random function: Q(x,¢&).

Scenario &! Scenario &2
2.0 1 F2.0
1.5 1.5
1.0 1 F1.0
0.5 F0.5
0.0 1 r0.0
2 10 1 2 D2 1 0 1 2
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Interlude: notation for random functions

e Random variable: €.

e Random function: Q(z,¢&).

o Convex relaxation @): Defined for each realization Q(, €).

@ Average function:

E[Q] =z — E*[Q(x,¢)]
Cost-to-go for each scenario Expected cost-to-go
— Q(z,¢") — E@)
2.0 1 Q(z,€?) r2.0
151 H15
101 H1.0
0.5 H0.5
001 : ' ; ' ' ' ' ' __too
-2 -1 0 1 2 -2 -1 0 1 2
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Measuring the non-convexity of a function
Main inequality

Let @ be a random function (such as a cost-to-go function, for example)

o By definition: CVQ < Q.

0.84
0.6 9
0.4+
0.24

0.0

Figure: A realization of Q).
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Measuring the non-convexity of a function
Main inequality

Let @ be a random function (such as a cost-to-go function, for example)

o By definition: CVQ < Q.

@ Averages preserve inequalities:
0.8

E[G] <E[Q].

0.0

Figure: Average function.
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Measuring the non-convexity of a function
Main inequality

Let @ be a random function (such as a cost-to-go function, for example)

o By definition: CVQ < Q.

1.0
@ Averages preserve inequalities:
0.8
E[Q] <E[Q].
@ By definition of convex 041
relaxation:
0.2
- —_— — E[Q]
E[QI<E[Q]<E[Q]. ol — EI@

Figure: Average function.
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Measuring the non-convexity of a function
Main inequality

Let @ be a random function (such as a cost-to-go function, for example)

o By definition: CVQ < Q.

1.0
@ Averages preserve inequalities:

0.8

E[Q] <E[Q].

@ By definition of convex 041

relaxation:
024 ]E[(?]
- —_— — E[Q]
E[QI<E[Q]<E[Q]. 0o] — FI@
7'2 7'1 (‘) 1 2

Figure: Average function.
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Measuring the non-convexity of a function
Gap inequality

-~ —_—

E [Q] and E [Q]: underapproximations to E [Q].

~

o E[Q] <E[Q] <E[Q] ]

@ Rewriting them:

0.84

E[Q-E[QI<E[Q-E[Q] ,,

0.4
02— EQ

— E[Q]
00d — ElQ

) -1 0 1 2

Figure: Average function.

lago Leal de Freitas Convexification by Averages November 11, 2019 15 /56



Measuring the non-convexity of a function
Gap inequality

-~ —_—

E [Q] and E [Q]: underapproximations to E [Q].

° E[G] <E[Q] <E[Q] o]
@ Rewriting them:
E[Q]-E[QI<E[Q]-E[Q]
=E[Q-Q] o
02] T ElQ
— E[Q]
004 5[]

Figure: Average function.
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Measuring the non-convexity of a function
Gap inequality

-~ —_—

E [Q] and E [Q]: underapproximations to E [Q].

~

o E[J] <E[Q] <E[Q]

@ Rewriting them:

0.71

0.6 9

E[Q-E[Q]<E[Q]-E[Q] *

0.4+

@ Expression for gap: 0.2+

gap(E[Q]) <E[gap(Q)]. oo

Figure: Gap functions.
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Measuring the non-convexity of a function
Gap inequality

~ —_—

E [Q] and E [Q]: underapproximations to E [Q].

~

o E[J] <E[Q] <E[Q]

@ Rewriting them:

0.74

0.6 9

E[Q-E[Q]<E[Q]-E[Q] *

0.4+

@ Expression for gap: 0.2+

gap(E[Q]) <E[gap(Q)]. oo

@ Monotone norm:

lgap(E [Q])]| < [|E [gap(Q)]]| < E|[lgap(Q)]-
Convexification by Averages November 11, 2019 15 /56



Back to optimization

@ Common case: cost-to-go is only uncertain on stage transition,
Q€)= min cTy

st. Ay=T(x —&)+b
y = 0.
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Back to optimization

@ Common case: cost-to-go is only uncertain on stage transition,
Q(z,§) = min c'y
sl./t. Ay=T(x—-&) +b
y = 0.
e Additive noise: Q(x,§) = f(z —¢&).
Additive Noise

2.01

T T T T T T T T

—4 -3 -2 -1 0 1 2 3 4
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Back to optimization

@ Common case: cost-to-go is only uncertain on stage transition,
Q(z,§) = min c'y
;;. Ay=T(x—-&) +b
y = 0.
e Additive noise: Q(x,§) = f(z —¢&).
Additive Noise

2.0
1.5 1
1.0 1
0.5 1
— Q¢
— Q(z,¢'
00 Az, ¢Y)
—4 -3 -2 -1 0 1 2 3 4
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Back to optimization

@ Common case: cost-to-go is only uncertain on stage transition,
Q(z,§) = min c'y
sl.lt. Ay=T(x—-&) +b
y = 0.
e Additive noise: Q(x,§) = f(z —¢&).
Additive Noise

2.0 7
1.5 1
1.0
— x,£0
03] — Qe
— Q)
— Qg
- (@€
—4 -3 -2 -1 0 1 2 3 4
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Additive noise

o Let Q(,€) = f(z —£).
Question J

Is there a relation between the gap of E [Q] and the gap of f7

-2 0 2 4 6
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Additive noise

o Let Q(,€) = f(z —£).
Question J

Is there a relation between the gap of E [Q] and the gap of f7

@ Yes! With one condition: translation invariance.
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Additive noise

@ The translation operator 7, shifts a function by a,

Taf(x) = f(z —a).

0 :
-2 0 2 4 6
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Additive noise

@ The translation operator 7, shifts a function by a,

Taf(x) = f(z —a).

@ A function norm is translation invariant if

LA = ll7af1l-

Examples: Again, uniform norm and all p-norms.

0 : :
-2 0 2 4 6
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Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

1.0
|gap(E [Q])]] < [|E [gap(@)]I] oz
< E|lgap(Q)|| 06
0.4

024 ElQ)

T | — EQ

004 E[Q]

) -1 (3 1 2
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Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

1.04
|gap(E [QDI < [|E [gap(Q)]Il  os
<Elgap(@Il
=E|ref — 7 fll I [
— E[Q]
0249 ]E\[(/N
!
0.04 f
,’2 -1 (3 1 2
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Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

1.0
|gap(E [Q])]] < [|E [gap(@)]I] oz
<Elgap(@Il
“Elref -l |\,
=E|l7e(f = Dl — E[Q)
024 — E[Q]
!
0.0 /
O -1 0 1 2

lago Leal de Freitas Convexification by Averages November 11, 2019 19 /56



Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

1.0
lgap(E [QD < [|E [gap(@)]]  os1
<Elgap(@Il
=Elref -7/l I [
=E|r(f=Hl |— =@
¥l 24 — E[Q]
=E|[f—f] o2 s
0.01 !
,‘2 -1 (‘) 1 2
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Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

lgap(E [QD < [|E [gap(@)]]  os1
<Elgap(@Il
=Elref -7/l I f—
=Ele(f-HI B(0)
=E|f -7l R [
=|f -7l 00—/ ‘
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Additive noise

Inequality

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

@ From the previous inequalities:

lgap(E [QD < [|E [gap(@)]]  os1
<Elgap(@Il
=Elref -7/l N
= Ellre(f =l '
=Ellf -1l %]
=If = £l 004 - ‘ | ‘ ‘
= |lgap(f)ll - B ’ 1 ’
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Additive noise

Uniform bounds

e Inequality:

lgap(E [@D] < [[E [gap(@)]]] < llgap(H)] -
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Additive noise

Uniform bounds

@ Inequality for uniform norm:

lgap(E [@D) o, < [IE [gap(@)]llo, < [lgap(f)lls -
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Additive noise

Uniform bounds

@ Inequality for uniform norm:

lgap(E [@D) o, < [IE [gap(@)]llo, < [lgap(f)lls -

@ Improvement: probability of £ being inside the support of gap(f) may

be small,
Theorem
lgap(E [Q])]l, < [IE [gap(Q)]llo < & llgap(f)llo
where
Kk = sup P [x — & € supp gap(f)]
x
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Additive noise

Uniform bounds

@ Inequality for uniform norm:

lgap(E [@D) o, < [IE [gap(@)]llo, < [lgap(f)lls -

@ Improvement: probability of £ being inside the support of gap(f) may
be small,

Theorem

lgap(E [Q]) [l < IE [gap(@)]ll4, < £ [lgap(f)llq
where

K= Sl;p]P’ [z — & € supp gap(f)]

@ « is small if the distribution of £ is “scattered enough”.
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Additive noise

Asymptotic behaviour

Theorem

If gap(f) is integrable and &, are random variables whose densities i,
are bounded,

lgap(E [Q])ll,, < [IE [gap(@)]llo < llulle [l8aP(A); -
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Additive noise

Asymptotic behaviour

Theorem

If gap(f) is integrable and &, are random variables whose densities i,
are bounded,

lgap(E [@D]l < [[E [gap(@)]llo < [l llgap(f)l; -

@ This means that if
H:U'/CHoo - 07

the expected function E [()] becomes asymptotically convex.
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Additive noise

Asymptotic behaviour

o &~ U[—h,h] ° HMhHoo = % —0

Original function and distribution Average function
2.01 r2.0
1.5 rl.5
1.0 1 r1.0
0.5 1 r0.5
0.0 1 ‘ ‘ r 0.0
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Additive noise

Asymptotic behaviour

o & ~ N(m,0?) o llunly = 75z — 0

Original function and distribution Average function
2.01 r2.0
1.5 1 rl.5
1.0 A r1.0
0.5 1 r0.5
0.0 1 : : r0.0
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Another approach: second derivative

@ Question: Why the gap?

e Famous result: f: (a,b) — R twice differentiable,

fis convex <= f">0.
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Another approach: second derivative

@ Question: Why the gap?

e Famous result: f: (a,b) — R twice differentiable,

fis convex <= f">0.

90 Function Second derivative 90
1.5 rl.5
1.0 r1.0
0.5 1 r0.5
0.0 1 0.0
~0.51—— F — \/ F—0.5
-1.0 T T T T T T —-1.0
-2 0 2 -2 0 2
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Another approach: second derivative

@ Question: Why the gap?

e Famous result: f: (a,b) — R twice differentiable,

0.0 1

—0.5 1

-1.0

fis convex <= f">0.

Function Second derivative 90
rl.5
r1.0

/\/\ r0.5
0.0
F % r—0.5
T T T T T T —-1.0
-2 0 2 -2 0 2
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Another approach: second derivative

Idea

Use the negative part of f” to measure the non-convexity of f.

D(f) = [f"]-,

where [z]_ = max{—z, 0}.
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Another approach: second derivative

Idea

Use the negative part of f” to measure the non-convexity of f.

D(f) = [f"]-,

where [z]_ = max{—z, 0}.
v
90 Function Second derivative’s negative part
1.5 r1.5
1.0 — — F1.0
051 / /\ - H0.5
0.0 1 0.0
"
~0.51 ” 0.5
— —
-1.0 T T T T T T —-1.0
-2 0 2 -2 0 2
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Use the negative part of f” to measure the non-convexity of f.

D(f) = [f"]-,

where [z]_ = max{—z, 0}.
v
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1.5 r1.5
1.0 r1.0
0.5 1 r0.5
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Another approach: second derivative

Idea

Use the negative part of f” to measure the non-convexity of f.

D(f) = [f"]-,

where [z]_ = max{—z, 0}.

Properties:
e [f"]- is identically zero if and only if f is convex,

e [f"]- is always non-negative.
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Another approach: second derivative
Main inequality

Let Q be a smooth random function,

@ Exchanging expected value and L5
derivative:

E [Q]” ) [Q”] )

1.0

— E[Q]

—1.0-— T T T T
-2 -1 0 1 2
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Another approach: second derivative
Main inequality

Let Q be a smooth random function,

@ Exchanging expected value and L5
derivative:

E [Q]” _ E [Q//] .

1.0

e Convexity of negative part:

max {E [Q”(ﬂ?)] y 0} —0.5
< E[max{@”(a:), O}], V.

-1.0
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Another approach: second derivative
Main inequality

Let Q be a smooth random function,

@ Exchanging expected value and L5
derivative:
1.04 .
E [Q]” _ E [Q//] .
0.5
o Convexity of negative part: o
max {E [Q"(x)], 0 N E[Q"]
EQE1 0w
< E[max{@”(a:), O}], V. L= ElQ’]-
R 1 0 1 2

@ Therefore:

[E[Q]"]- <E[[Q"]-].
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Derivative of cost-to-go

@ The optimal value function of a 31

mixed integer program is only
piecewise linear. 27
@ So its derivatives are not 1
well-defined...
ol
—14
— s
—24 :
—4 -2 0 2 4

lago Leal de Freitas Convexification by Averages November 11, 2019 26 /56



Derivative of cost-to-go

@ The optimal value function of a 31
mixed integer program is only
piecewise linear. 2

@ So its derivatives are not 1
well-defined. ..

@ Solution: distributions!
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Derivative of cost-to-go

@ The optimal value function of a 31
mixed integer program is only
piecewise linear. 2

@ So its derivatives are not 1
well-defined. ..

@ Solution: distributions!

1

—4 -2 0 2 4

@ Distribution theory: the second “derivative” of any continuous
function is representable by a measure.
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Derivative of cost-to-go

@ The optimal value function of a 31
mixed integer program is only
piecewise linear. 2

@ So its derivatives are not 1
well-defined. ..

@ Solution: distributions!

1

T T T T T

—4 -2 0 2 4

@ Distribution theory: the second “derivative” of any continuous
function is representable by a measure.

@ More: f” is a non-negative measure <= f is a convex function.
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Another approach: second derivative

Decomposition of measures

Hahn-Jordan decomposition

Every (signed) measure 1 can be uniquely decomposed as the difference of
two non-negative and mutually singular measures:

= [u]+ — [u]-
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Another approach: second derivative

Decomposition of measures

Hahn-Jordan decomposition

Every (signed) measure 1 can be uniquely decomposed as the difference of
two non-negative and mutually singular measures:

= [u]+ — [u]-

Another non-convexity measure

Let f: (a,b) — R be a continuous function. It is convex if and only if

[f"]- = 0.
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Another approach: second derivative
Main inequality

Let @Q be a random continuous function.

o It still holds that: 15
[E [Q]”], < E[[Q”],]. 1.0
0.51
0.01
| Een

1 — [Eier-

— E[Q"]
-1.0

-2 -1 0 1 2
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Reduction of non-convexity
Additive Noise

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

2.00 S
1754 — E[Q]
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Reduction of non-convexity
Additive Noise

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

e f” controls E [Q"]:

2.001 ¢ f
i E[Q]
IE Q-] < |E[Q1-1] 5 L men
S VN —
1.00 4
0.75 4
0.50 4
0.25 4
0.00 4
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Reduction of non-convexity
Additive Noise

o Let Q(z,§) = e f(z) = f(z — ).

@ |-||: monotone and translation invariant.

e f” controls E [Q"]:

IE [Q1"]-|

e Uniform norm:
[ELQ"-],, < #[lF"1-]]., -

K = sup, P [z — & € supp[f”]-].

2.004
1.754
1.501
1.25
1.00
0.754
0.50 4
0.25 1

0.00 4

E[Q]

— [E[Qr]-
— E[Q"]-

-

S S VN
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Similarities between gap(f) and [f”]-

Inequalities for gap(f): Inequalities for [f"]_:
o gap (E[Q]) < E [gap(Q)], o [E[Q"]- <E[[Q"]-]
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Similarities between gap(f) and [f”]-

Inequalities for gap(f): Inequalities for [f"]_:
o gap (E[Q]) < E [gap(Q)], o [E[Q)"]- <E[[Q"]-]
e Additive noise: e Additive noise:
IE [gap(@)]]] < llgap(/)Il, [EQ"]-[| < [ILF"1-]
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Similarities between gap(f) and [f”]-

Inequalities for gap(f): Inequalities for [f"]_:
o gap (E [Q]) < E [gap(Q)], o [E[Q]"]- <E[[Q"]-]
e Additive noise: o Additive noise:
|E [gap(Q)]]| < [lgap(f)], |E[Q"T-|| < IIF"1-]]
e Uniform norm: o Uniform norm:
IE [gap(@)]llc < & llgap(f)lls |E[Q"T-||., < & || [F"1-],
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Similarities between gap(f) and [f”]-

Inequalities for gap(f): Inequalities for [f"]_:

> gap (E[Q]) < E [gp(@)] o [£1Q)']- < E[[Q)-]
e Additive noise: o Additive noise:

|E [gap(Q)]]| < [lgap(f)], |E[Q"T-|| < IIF"1-]]
e Uniform norm: o Uniform norm:

IE [gap(@)]llc < & llgap(f)lls |E[Q"T-||., < & || [F"1-],

@ Asymptotic: @ Asymptotic:

IE [gap(@)] ], 2=, Q- == 0.
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Convex cones

Definition
A pointed convex cone K is a set
satisfying

o Containing all rays:
VA20,ze K = MreK.

o Convexity:

r,ye K — x+ye K,

@ Containing no lines:

reKand —ze K — 1 =0. Figure: Example of convex cone.
v
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Convexity with respect to a cone

Definition
Every proper convex cone K induces a partial order <y compatible with
the linear structure and given by

a<gb <= b—acK.
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Convexity with respect to a cone

Definition
Every proper convex cone K induces a partial order <y compatible with
the linear structure and given by

a<gb <= b—acK.

Definition
A function f: X — Y is convex with respect to a cone K C Y if its
domain is a convex set and for all A € [0, 1],

fQz+ (1= Ny) <k Af(z) + (1= A)f(y).
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Non-convexity measures

Definition

A non-convexity measure on a set X of functions is an operator
M: X — Y whose codomain has a conic order <k such that

M = gap with K the cone of M = f— [f"]- with K the cone of

non-negative functions: non-negative measures:
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Non-convexity measures

Definition

A non-convexity measure on a set X of functions is an operator
M: X — Y whose codomain has a conic order <k such that

e M(f)=0 <= fis convex;

M = gap with K the cone of M = f+— [f"]- with K the cone of
non-negative functions: non-negative measures:
e gap(f) =0 <= [ is convex, o [f"]- =0 <= fis convex,
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Non-convexity measures

Definition
A non-convexity measure on a set X of functions is an operator
M: X — Y whose codomain has a conic order <k such that

@ M(f) =0 <= fis convex;

e M(f)=k0,Vf;

M = gap with K the cone of M = f+— [f"]- with K the cone of
non-negative functions: non-negative measures:
e gap(f) =0 <= [ is convex, o [f"]- =0 <= fis convex,
e gap(f) is non-negative function, e [f”]- is non-negative measure,
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Non-convexity measures

Definition
A non-convexity measure on a set X of functions is an operator
M: X — Y whose codomain has a conic order <k such that

@ M(f) =0 <= fis convex;

e M(f)=k0,Vf;

@ M is convex with respect to K.

M = gap with K the cone of M = f+— [f"]- with K the cone of
non-negative functions: non-negative measures:
@ gap(f) =0 <= [ is convex, o [f"]- =0 <= fis convex,
e gap(f) is non-negative function, e [f”]- is non-negative measure,
o gap(E [Q]) < E [gap(Q)]. o [(EQ)"]- <E[Q"]-.
Convexification by Averages November 11, 2019 33 /56




Properties of non-convexity measures

@ Jensen's inequality:

lago Leal de Freitas Convexification by Averages November 11, 2019 34 /56



Properties of non-convexity measures

@ Jensen's inequality:

M(E[Q]) < E[M(Q)],

@ Preserved by monotone norms:
If ||-|| is KX-monotone, ||-|| o M is also a non-convexity measure.
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Properties of non-convexity measures

@ Jensen's inequality:

M(E[Q]) < E[M(Q)],

@ Preserved by monotone norms:
If ||-|| is KX-monotone, ||-|| o M is also a non-convexity measure.

e Translation invariance: (Q(x,&) = 7¢f)

va, M(1af) = M(f) = E[M(Q)] < M().
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Properties of non-convexity measures

@ Jensen's inequality:

M(E[Q]) < E[M(Q)],

@ Preserved by monotone norms:
If ||-|| is KX-monotone, ||-|| o M is also a non-convexity measure.

e Translation invariance: (Q(x,&) = 7¢f)
Va, M(af) = M(f) = E[M(Q)] < M(J).

@ Uniform bounds:

If M(f) is bounded, If M(f) is integrable,
[E [M(@)]lle < &Ml [E M@)o < Nl 1M
where where 1 is the probability density of

Kk = sup, P [x —£e€ supp./\/l(f)]. the random variable.
Convexification by Averages November 11, 2019 34 /56



Other examples

Hessian's smallest eigenvalue

@ Second derivative for R”,

o fis convex <= its Hessian D?f is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of D?f,

R(f) = a(D?f)]-.
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Other examples

Hessian's smallest eigenvalue

@ Second derivative for R”,

o fis convex <= its Hessian D?f is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of D?f,

R(f) = a(D?f)]-.

@ R(f) =0 <= fis convex.
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Other examples

Hessian's smallest eigenvalue

@ Second derivative for R”,

o fis convex <= its Hessian D?f is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of D?f,

R(f) = a(D?f)]-.

@ R(f) =0 <= fis convex.

e R(f)=0.
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Other examples

Hessian's smallest eigenvalue

@ Second derivative for R”,

o fis convex <= its Hessian D?f is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of D?f,

R(f) = a(D?f)]-.

@ R(f) =0 <= fis convex.
e R(f)=0.

@ Min-max theorem:

(D) = int o' (D)o,
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Risk-averse convexification

Coherent risk measures

@ Expected value is too “neutral.
@ Sometimes, we want to be risk-averse.

@ Solution: Exchange [E in all formulas for a risk measure.
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Risk-averse convexification

Coherent risk measures

@ Expected value is too “neutral.
@ Sometimes, we want to be risk-averse.

@ Solution: Exchange [E in all formulas for a risk measure.

Definition

A coherent risk measure is a function p satisfying:
@ Monotonicity: X <Y = p(X) < p(Y);
@ Translation equivariance: for all a € R, p(X + a) = p(X) + a;
e Convexity: for all A e [0,1],

P(AX + (1 =XN)Y) < Ap(X) + (1 = A)p(Y);

o Positive homogeneity: for all ¢t = 0, p(tX) = tp(X).
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Coherent risk measures

Examples of coherent risk measures:

Random values

104
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Coherent risk measures

Examples of coherent risk measures:
e Maximum value: sup X;

Maximum among values

104
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Coherent risk measures

Examples of coherent risk measures:

@ Maximum value: sup X
e Expected value: E [X];

Average of values

104
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Coherent risk measures

Examples of coherent risk measures:
e Maximum value: sup X;

o Expected value: E [X];

o Expectation of largest values;

Average of largest values

104
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Coherent risk measures

Examples of coherent risk measures:
e Maximum value: sup X;
e Expected value: E [X];
o Expectation of largest values;

Dual representation

A coherent risk measure can be written as

p(X) = sup E* [ X]
HEP

for a given family of probabilities P.
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Risk-averse convexification
Main inequality

Let @) be a random function, p a coherent risk measure.

o By definition: CVQ < Q.

0.84

0.6 9

0.4+

0.24

0.0
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Risk-averse convexification
Main inequality

Let @) be a random function, p a coherent risk measure.

o By definition: CVQ < Q. L4
@ Monotonicity: 124
~ 1.0
p(Q) < p(Q). ool
0.6
0.4

021 Q)

oodl— (@)

—9 -1 (‘) 1 2
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Risk-averse convexification
Main inequality

Let @) be a random function, p a coherent risk measure.

e By definition: Q < Q. 141
@ Monotonicity: 124
~ 1.0
p(@) < p(Q)-
@ Convex relaxation: 061

- —_ 0.44 — 0

p(Q) < p(Q) < p(Q). 0.2 2(0)

004 /@)

—9 -1 (‘) 1 2
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Risk-averse convexification
Gap inequality

p(Q) and R@): underapproximations to p(Q).

° p(Q) < p(Q) < p(Q) 141
1.2
1.0
0.8
0.6
0.4
— p(Q)
024 — p(Q)
004 /@)
P 1 0 1 2
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Risk-averse convexification
Gap inequality

p(Q) and /IQ/): underapproximations to p(Q).

~

o (@) < p(Q) < p(Q)

@ Rewriting them: 08
p(Q) = p(Q) < p(Q) = p(@). o]

0.24

0.0
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Risk-averse convexification
Gap inequality

p(Q) and /IQ/): underapproximations to p(Q).

~

o (@) < p(Q) < p(Q)

@ Rewriting them: 05
Q) — p(Q) < p(Q) — p(@). oo

e Subadditivity: 0.41
p(Q) = p(Q + @ - Q) . 021

< p(Q - Q) + p(Q) 0.0
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Risk-averse convexification
Gap inequality

p(Q) and /IQ/): underapproximations to p(Q).

o p(@) < p(Q) < p(Q)
@ Rewriting them: 05
Q) — p(@Q) < p(Q) — p(Q). o]
e Subadditivity: 0.41
p(Q) = p(Q + @ - Q) . 021
< p(Q - Q) + p(Q) 0.0

Putting it all together:

—_—

p(Q)—p(Q) < p(Q)—p(Q) < p(Q—Q).
Convexification by Averages November 11, 2019 39/56



Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qz,8) = flz - &) = e f (),

the results regarding translation invariant norms still hold?
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Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qz,8) = flz - &) = e f (),

the results regarding translation invariant norms still hold?

Answer

Not in general...
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Additive noise

Counterexample

o Expected value: (always)

lgap(E [QD] < |[E [gap(@)]]| < llgap(f)l-

@ Risk measures: (always)

lgap(p(Q))II < llo(gap(@))]] -
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Additive noise

Counterexample

o Expected value: (always)

lgap(E [QD] < |[E [gap(@)]]| < llgap(f)l-

@ Risk measures: (always)

lgap(p(Q))|l < llp(gap(@))]l-

@ Risk measures: (possible)

lgap(p(@)] = llgap(f)]] -
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Additive noise

Counterexample

o Expected value: (always)

lgap(E [@D] < [[E [gap(@)]]] < llgap(f)]l -
@ Risk measures: (always)
lgap(p(Q))II < llo(gap(@))]] -
@ Risk measures: (possible)
lgap(p(@))]l = llgap(f)Il-
o Counterexample:

f(x) = min {(:p — 2)2, (x + 2)2}

p(X) = sup X
£=+3

lago Leal de Freitas Convexification by Averages November 11, 2019
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Additive noise

Counterexample

61 — -6

44 H4

2 F2

01 HO
4 20 2 4 4 20 2 4
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Additive noise

Counterexample

6 ! H6
44 H4
2 F2
(3K
AR
01 1 HO
-4 =2 0 2 4 -4 =2 0 2 4
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Additive noise

Counterexample

6 ! H6
44 H4
2 F2
(3K
AR
01 Lt HO
-4 =2 0 2 4 -4 =2 0 2 4

November 11, 2019 42 /56
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Additive noise

Counterexample

| — — 9 .
— / — »(@Q
- Ly
2 Lo
0 Lo
4 o 2 4 a4 S o 2 4
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Additive noise

Counterexample

o — — @
— f — p(Q)
4 \ / 4
2 2
01 0
4 o 2 4 4 2o 2 4
o Filled areas:
16 22
lgap(H)l = 5 lgan(p(@), = %
o = z =, El= wae
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Additive noise

Counterexample

6 ! L6
— f
41 L4
24 )
01 Lo
e 2 4 -4 -2 0 2 4

o Filled areas and max heights:

leap (Dl = 5 Jap(p(Q)), = 5
lgap(f)lo = 4, lgap(p(Q)) [, = 3.75
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Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qz,8) = flz - &) = e f (),

the results regarding translation invariant norms still hold?

Answer

Not in general...
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Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qz,8) = flz - &) = e f (),

the results regarding translation invariant norms still hold?

Answer

Not in general... but yes for the uniform norm!
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Additive Noise

Uniform Norm

Let Q(x,¢) = f(z — &) = 7ef(2).

o Always valid inequalities:

lago Leal de Freitas
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Additive Noise

Uniform Norm

Let Q(x,¢) = f(z — &) = 7ef(2).

o Always valid inequalities:

PQ @ <p@-p@ |
<p(@Q—-Q). sl \
e Uniform norm: 0.61

1(Q) — p(@Q)
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Additive Noise

Uniform Norm

Let Q(x,¢) = f(z — &) = 7ef(2).

o Always valid inequalities:

PQ @ <p@-p@ |
<p(@Q—-Q). sl \
e Uniform norm: 0.61

1(Q) — p(@Q)

9(Q) = p(Dle 02|

p(Q)
p(Q)

p(Q)

F=Fl E
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Additive Noise

Uniform Norm

Let Q(x,¢) = f(z — &) = 7ef(2).

o Always valid inequalities:

e Uniform norm:

1(Q) — p(@Q)

lago Leal de Freitas
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Application to cutting-planes algorithms
o Convex: approximations by cuts

@ Non-convex: Construct better approximations from

@ Integrate into Stochastic Dual Dynamic Programming.
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Approximation by cuts

o Convex: 14

g(z) = max a'xz—b
a,b

st. aly—b< fly), Yy.  osq
0.6
0.4
0.2

0.0

—0.2
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Approximation by cuts

o Convex: 14

g(z) = max a'xz—b
a,b

s.t. aTy —b< f(y), Yy. osq ’
0.6

0.44

0.24

0.0

—0.2
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Approximation by cuts

o Convex: 14
1.24
— T

g(z) = nclfl;x a'xz—b ol
s.t. aTy —b< f(y), Yy. osq

0.6

@ Non-convex: 044
~ B T, 0.2
f(x) = rr;%)x a'r—>b ool
st. aly—b< fly), Yy. o2
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Approximation by cuts

e Convex: 14
1.24
_ T

g(z) = nclfl;x a'xz—b Lol
s.t. aTy —b< f(y), Yy. osq

0.6

@ Non-convex: 044
~ . T _ 0.2
f(x) = rr;%)x a'r—>b oo
s.t. aTy —b< f(y), Yy. o2

Only convex relaxation is approximable.
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Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

lago Leal de Freitas Convexification by Averages November 11, 2019 47 /56



Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

Standard method

o Calculate a cut for each scenario,

@ Approximate via average cut.
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Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

Standard method

o Calculate a cut for each scenario,

@ Approximate via average cut.

A,

Convexification by Averages
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Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

Standard method
o Calculate a cut for each scenario,

@ Approximate via average cut.

N/

Cut for Q!
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Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

Standard method
o Calculate a cut for each scenario,

@ Approximate via average cut.

N/

Cut for Q! Cut for Q?
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Approximation by cuts

Stochastic programs

What we want
Approximate E [Q] by cuts.

Standard method
o Calculate a cut for each scenario,

@ Approximate via average cut.

N

Cut for Q! Cut for Q?

Average cut
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Approximation by cuts

Stochastic programs

Why that cut was not tight?

oo/

Cut for Q! Cut for Q2 Average cut

Question J
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Approximation by cuts

Stochastic programs

Question }

Why that cut was not tight?
. U

Cut for Q! Cut for Q2 Average cut

@ Remember:
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Approximation by cuts

Stochastic programs

Question J

Why that cut was not tight?

@ Remember: o
E[Q]<E[Q]<E[Q].

e Cut for scenario &' is only tight for Q(-, 7).

@ Average cut: only tight for E [é]

AN,

Cut for Q! Cut for Q2 Average cut
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Approximation by cuts

Stochastic programs

Question J

Why that cut was not tight?

@ Remember: o
E[Q]<E[Q]<E[Q].

e Cut for scenario & is only tight for Q(-, €.

@ Average cut: only tight for E [Q

\ /N

Cut for Q! Cut for Q2 Average cut
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Linked formulation

Question

How to directly approximate IE\[a] by cuts?

Cost-to-go function:

Q(z, &) = myin clz

st. Av+By=>
y=0
yeR" x ZF.
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Linked formulation

Question
How to directly approximate IE\[a] by cuts? J

Finite number of scenarios:

Qz,6) = min ¢y,

Yi

s.t. Ajx+ By = b;
yi =0
y; € R x ZF.
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Linked formulation

Question

How to directly approximate IE\[a] by cuts? J

Average over all scenarios:

N
E[Qx,9)] = pi min ¢l yi
=1 s.t. Asx + By = b;

yi =0
y; € R™ x ZF.
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Linked formulation

Question

How to directly approximate IE\[a] by cuts?

Build a linked program:

E[Q(@,&]= min Y picly;

Y1y YN
st. Ajx+ Bjy; =b;, fori=1,...,N
yi = 0, fori=1,...,N
y; € R™ x ZF, fori =1,...,N.
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Linked formulation

Question

How to directly approximate IE\[a] by cuts?

Build a linked program:

E[Q(@,&]= min Y picly;

Y1y YN
st. Ajx+ Bjy; =b;, fori=1,...,N
yi = 0, fori=1,...,N
y; € R™ x ZF, fori =1,...,N.

—_—

e Cuts for this problem can be tight for E [Q]!
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Computational experiments

Multi-stage non-convex program,

SDDP + strenghtened Benders cuts.
2.0
151
10
0.5 1

0.0 1

lago Leal de Freitas

Qi—1(z4-1,&§) = min
Te,uy

s.t.

Cost-to-go

|z¢| + E [Q¢(w4, &41)]

Ty =1 + & +up
Ut € {—1,1}.

Expected cost-to-go
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Computational experiments

Stage 7
6 — F[Q]
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Computational experiments

Stage 7

6 1 Q]
——- Decomposed Q
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Computational experiments

Stage 7
6 1 Q]
——- Decomposed Q
—== Linked Q
5 -
4_
3 .
2 .
1 -
O_
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Computational experiments

Stage 5
6 1 Q]
——- Decomposed Q
—== Linked Q
5 -
4_
3 .
2 .
1 -
O_
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Computational experiments

Stage 3
6 1 Q]
——- Decomposed Q
—== Linked Q
5_
4_
3_
5 ~\~~‘\\\ //’,,
No ’z/
14 \\\\\ /’/,/
O_ \\_ __________ ’—’
-3 -2 -1 0 1 2 3
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Computational experiments

Stage 1

6 1 Q]

——- Decomposed Q

—== Linked Q
5_
4_
34 //,/
PO AN SYYSYSPRIRYYY SPRYRSTSISIRY SIS RSy
11 F~< z’/”
04 §\§§_—~-——‘—__—‘4
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Hydrothermal planning

Qu(vi—1,6) = min ' gt + ggpdfy + BQry1(vr)
Ve,qt,St,9¢,df ¢, fe .2t

st. v =vi1+ & —q — st
@+ Mygr + dfy + Mp fi = di,
0y <9, 0<q¢<qg 0<s
0<g<g, O0<fi<f, 0<dfy,
vy = (1 - Zt) UMinOp>
gt = 2t 9o,
z € {0,1}™.

@ 500 iterations;
o 12 stages;

e v € R2.
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Hydrothermal planning

Computational experiments

Table: Results for non-convex model with 2 subsystems.

Cut types

Decomposed  Linked

Time (seconds) 759 16854
Iterations 500 500
Memory (GB) 0.418 1.089
Calculated cost (Bi R$) 10.410 11.170
Simulated cost (Bi R$) 12.227 12.209
Gap (%) 14.44 8.19
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Computational experiments
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Hydrothermal planning

Computational experiments

Table: Results for non-convex model with 2 subsystems.

Cut types

Decomposed  Linked

Time (seconds) 18154 16854
Iterations 4000 500
Memory (GB) 0.418 1.089
Calculated cost (Bi R$) 10.410 11.170
Simulated cost (Bi R$) 12.227 12.209
Gap (%) 13.79 8.19
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Hydrothermal planning

Computational experiments

Table: Results for non-convex model with 2 subsystems.

Cut types

Decomposed  Linked

Time (seconds) 18154 16854
Iterations 4000 500
Memory (GB) 0.418 1.089
Calculated cost (Bi R$) 10.410 11.170
Simulated cost (Bi R$) 12.227 12.209
Gap (%) 13.79 8.19
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Future works
@ Non-convexity measures: results for risk measures;

o Linked formulation: Large-scale problems;

@ Linked formulation: linking only parts of the scenario tree.
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Thank youl
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Linked formulation

Conditional value-at-risk

Definition

The conditional value-at-risk is the coherent risk measure given by

CVaR,[X] = mf z+ 1%IE[[X — 2]+ ]

Linked formulation:

CVaR,[Q](x) = mln 2+ 1 Zf\ilpiti

7 b
Ly
st. ¢y <ti+z, fori=1,...,N
Al’ZL‘-i-Biyi:bi, fOFiZ].,...,N
y>0,t>0,z€eR.
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