Convexification by Averages

lago Leal de Freitas Advisor: Bernardo Freitas Paulo da Costa

Universidade Federal do Rio de Janeiro

November 11, 2019

lago Leal de Freitas

Convexification by Averages

November 11, 2019 1 / 56

ELE NOR

Two-stage problems

Convex case

A two-stage linear program is

$$\min_{\substack{x \\ \text{s.t.}}} c_1^\top x + Q(x) \\ \text{s.t.} \quad A_1 x = b_1 \\ x \ge 0,$$

where the cost-to-go function is

$$Q(x) = \min_{y} c^{\top}y$$

s.t. $Ax + By = b$
 $y \ge 0.$

Figure: Example of cost-to-go.

ELE DOG

Two-stage problems

Non-convex case

A two-stage mixed integer linear program is

$$\min_{x} \quad c_{1}^{\top}x + Q(x) \\ \text{s.t.} \quad A_{1}x = b_{1} \\ x \ge 0,$$

where the cost-to-go function is

$$Q(x) = \min_{y} c^{\top}y$$

s.t. $Ax + By = b$
 $y \ge 0$
 $y \in \mathbb{R}^{n} \times \mathbb{Z}^{k}.$

Figure: Example of cost-to-go.

31= 990

Stochastic programs

Future is uncertain

Cost-to-go Q: random function.

• Uncertainty
$$\xi = (c^{\top}, A, B, b)$$
:

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ax + By = b$
 $y \ge 0$
 $y \in \mathbb{R}^{n} \times \mathbb{Z}^{k}.$

Figure: Random cost-to-go.

Stochastic programs Future is uncertain

Cost-to-go Q: random function.

• First stage:

$$\min_{x} \quad c_{1}^{\top}x + \mathbb{E}\left[Q(x,\xi)\right]$$

s.t.
$$A_{1}x = b_{1}$$
$$x \ge 0.$$

• Uncertainty
$$\xi = (c^{\top}, A, B, b)$$
:

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ax + By = b$
 $y \ge 0$
 $y \in \mathbb{R}^{n} \times \mathbb{Z}^{k}.$

Figure: Expected cost-to-go.

Average of non-convex functions

Question

What is a characterization of the expected cost-to-go?

- Average of convex functions is **convex**.
- For non-convex functions:

Average of non-convex functions

Question

What is a characterization of the expected cost-to-go?

- Average of convex functions is **convex**.
- For non-convex functions:

Average of non-convex functions

Question

What is a characterization of the expected cost-to-go?

- Average of convex functions is **convex**.
- For non-convex functions: it may also be!

Non-convexity reduction Uniform noises

Image: A matrix

三日 のへの

Non-convexity reduction Uniform noises

Image: A matrix

三日 のへの

Non-convexity reduction Uniform noises

Non-convexity reduction Uniform noises

November 11, 2019 6 / 56

Non-convexity reduction Uniform noises

November 11, 2019 7 / 56

Image: A matrix

▶ < E ▶ E = のQQ</p>

November 11, 2019 7 / 56

Image: A matrix

▶ < E ▶ E = のQQ</p>

November 11, 2019 7 / 56

Image: A matrix

November 11, 2019 7 / 56

Image: A matrix

Measuring the non-convexity of a function

Question

How to rigorously measure the non-convexity of a function?

Measuring the non-convexity of a function

Question

How to rigorously measure the non-convexity of a function?

Idea

A natural approach is to consider the **gap** between it and its convex relaxation!

- 4 E

Measuring the non-convexity of a function Convex relaxation

• Let f be a function.

November 11, 2019 9 / 56

ъ

Measuring the non-convexity of a function Convex relaxation

- Let f be a function.
- Its convex relaxation \check{f} is the largest convex function everywhere less than f.

Measuring the non-convexity of a function $\ensuremath{\mathsf{Gap}}$ function

• Define:
$$gap(f) = f - \check{f}$$
;

- Notice: the gap is identically zero if and only if f is convex,
- gap(f) is always non-negative;

ъ

Measuring the non-convexity of a function Gap comparisons

• We can say that f is less non-convex than g if

 $gap(f) \leq gap(g).$

lago Leal de Freitas

Convexification by Averages

November 11, 2019

Measuring the non-convexity of a function Gap comparisons

• We can say that f is less non-convex than g if

 $gap(f) \leq gap(g).$

• But their gaps may not be comparable...

Measuring the non-convexity of a function Monotone norms

- Solution: project on \mathbb{R} using a norm $\|\cdot\|$.
- Requirement: preserve gap comparisons,

 $\operatorname{gap}(f) \leqslant \operatorname{gap}(g) \implies \|\operatorname{gap}(f)\| \leqslant \|\operatorname{gap}(g)\|.$

Measuring the non-convexity of a function Monotone norms

- Solution: project on \mathbb{R} using a norm $\|\cdot\|$.
- Requirement: preserve gap comparisons,

$$gap(f) \leq gap(g) \implies ||gap(f)|| \leq ||gap(g)||.$$

Definition

A function norm $\|\cdot\|$ is **monotone** if for all $g, h \ge 0$,

 $g \leqslant h \implies \|g\| \leqslant \|h\|.$

Examples: The uniform norm, all *p*-norms...

Interlude: notation for random functions

- Random variable: ξ .
- Random function: $Q(x,\xi)$.

Interlude: notation for random functions

- Random variable: ξ .
- Random function: $Q(x,\xi)$.
- Convex relaxation \tilde{Q} : Defined for each realization $Q(\cdot,\xi)$.

Interlude: notation for random functions

- Random variable: ξ .
- Random function: $Q(x,\xi)$.
- Convex relaxation \check{Q} : Defined for each realization $Q(\cdot,\xi)$.
- Average function:

$$\mathbb{E}\left[Q\right] = x \mapsto \mathbb{E}^{\xi}\left[Q(x,\xi)\right]$$

Measuring the non-convexity of a function Main inequality

Let Q be a random function (such as a cost-to-go function, for example)

• By definition: $\check{Q} \leqslant Q$.

Figure: A realization of Q.

lago l	Leal	de	Frei	tas
--------	------	----	------	-----

Convexification by Averages

- B

ELE NOR

Measuring the non-convexity of a function Main inequality

Let Q be a random function (such as a cost-to-go function, for example)

- By definition: $\check{Q} \leq Q$.
- Averages preserve inequalities:

 $\mathbb{E}\left[\check{Q}\right] \leqslant \mathbb{E}\left[Q\right].$

Figure: Average function.

EL OQO

Measuring the non-convexity of a function Main inequality

Let Q be a random function (such as a cost-to-go function, for example)

- By definition: $\check{Q} \leqslant Q$.
- Averages preserve inequalities:

 $\mathbb{E}\left[\check{Q}\right] \leqslant \mathbb{E}\left[Q\right].$

• By definition of convex relaxation:

 $\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right].$

Figure: Average function.

November 11, 2019 14 / 56

3 + + 3 + 3 = 1 + 1 + 1 + 1

Measuring the non-convexity of a function Main inequality

Let Q be a random function (such as a cost-to-go function, for example)

- By definition: $\check{Q} \leqslant Q$.
- Averages preserve inequalities:

 $\mathbb{E}\left[\check{Q}\right] \leqslant \mathbb{E}\left[Q\right].$

• By definition of convex relaxation:

 $\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right].$

Figure: Average function.

November 11, 2019 14 / 56

Measuring the non-convexity of a function Gap inequality

 $\mathbb{E}[\check{Q}]$ and $\mathbb{E}[\bar{Q}]$: underapproximations to $\mathbb{E}[Q]$.

- $\mathbb{E}[\check{Q}] \leq \widecheck{\mathbb{E}[Q]} \leq \mathbb{E}[Q]$
- Rewriting them:

$$\mathbb{E}\left[Q\right] - \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right] - \mathbb{E}\left[\check{Q}\right]$$

Figure: Average function.

ELE SOC

Measuring the non-convexity of a function Gap inequality

 $\mathbb{E}[\check{Q}]$ and $\mathbb{E}[\bar{Q}]$: underapproximations to $\mathbb{E}[Q]$.

- $\mathbb{E}[\check{Q}] \leq \widecheck{\mathbb{E}[Q]} \leq \mathbb{E}[Q]$
- Rewriting them:

$$\mathbb{E}[Q] - \widecheck{\mathbb{E}[Q]} \leqslant \mathbb{E}[Q] - \mathbb{E}[\breve{Q}]$$
$$= \mathbb{E}[Q - \breve{Q}].$$

Figure: Average function.

ELE SOC

Measuring the non-convexity of a function ${}_{\mbox{Gap inequality}}$

 $\mathbb{E}[\check{Q}]$ and $\widetilde{\mathbb{E}[Q]}$: underapproximations to $\mathbb{E}[Q]$.

- $\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right]$
- Rewriting them:

$$\mathbb{E}\left[Q\right] - \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right] - \mathbb{E}\left[\check{Q}\right]$$

• Expression for gap:

 $\operatorname{gap}(\mathbb{E}\left[Q\right]) \leqslant \mathbb{E}\left[\operatorname{gap}(Q)\right].$

Figure: Gap functions.

November 11, 2019

3 + + 3 + 3 = 1 + 1 + 1 + 1

15 / 56
Measuring the non-convexity of a function $\ensuremath{\mathsf{Gap}}$ inequality

 $\mathbb{E}[\check{Q}]$ and $\widecheck{\mathbb{E}[Q]}$: underapproximations to $\mathbb{E}[Q]$.

- $\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right]$
- Rewriting them:

$$\mathbb{E}\left[Q\right] - \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right] - \mathbb{E}\left[\check{Q}\right]$$

• Expression for gap:

 $\operatorname{gap}(\mathbb{E}[Q]) \leq \mathbb{E}[\operatorname{gap}(Q)].$

 $\begin{array}{c} 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ \end{array}$

Monotone norm:

 $\left\|\operatorname{gap}(\mathbb{E}\left[Q\right])\right\| \leq \left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\| \leq \mathbb{E}\left\|\operatorname{gap}(Q)\right\|.$

lago Leal de Freitas

Convexification by Averages

EL OQO

• Common case: cost-to-go is only uncertain on stage transition,

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ay = T(x - \xi) + b$
 $y \ge 0.$

EL OQO

• Common case: cost-to-go is only uncertain on stage transition,

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ay = T(x - \xi) + b$
 $y \ge 0.$

• Additive noise: $Q(x,\xi) = f(x-\xi)$.

• Common case: cost-to-go is only uncertain on stage transition,

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ay = T(x - \xi) + b$
 $y \ge 0.$

• Additive noise: $Q(x,\xi) = f(x-\xi)$.

• Common case: cost-to-go is only uncertain on stage transition,

$$Q(x,\xi) = \min_{y} c^{\top}y$$

s.t. $Ay = T(x - \xi) + b$
 $y \ge 0.$

• Additive noise: $Q(x,\xi) = f(x-\xi)$.

• Let
$$Q(x,\xi) = f(x-\xi)$$
.

Question

Is there a relation between the gap of $\mathbb{E}[Q]$ and the gap of f?

lago Leal de Freitas

Convexification by Averages

November 11, 2019 17 / 56

• Let
$$Q(x,\xi) = f(x-\xi)$$
.

Question

Is there a relation between the gap of $\mathbb{E}\left[Q\right]$ and the gap of f?

• Yes! With one condition: translation invariance.

lago Leal de Freitas

Convexification by Averages

November 11, 2019 17 / 56

• The translation operator τ_a shifts a function by a,

$$\tau_a f(x) = f(x-a).$$

• The translation operator τ_a shifts a function by a,

$$\tau_a f(x) = f(x-a).$$

• A function norm is translation invariant if

$$\|f\| = \|\tau_a f\|.$$

Examples: Again, uniform norm and all *p*-norms.

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

- $\|\cdot\|$: monotone and translation invariant.
- From the previous inequalities: $\|gap(\mathbb{E} [Q])\| \leq \|\mathbb{E} [gap(Q)]\|$ $\leq \mathbb{E} \|gap(Q)\|$

ELE NOR

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

- $\|\cdot\|$: monotone and translation invariant.
- From the previous inequalities: $\|gap(\mathbb{E} [Q])\| \leq \|\mathbb{E} [gap(Q)]\|$ $\leq \mathbb{E} \|gap(Q)\|$ $= \mathbb{E} \|\tau_{\xi} f - \tau_{\xi} f\|$

ELE NOR

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

- **||**·**||**: monotone and translation invariant.
- From the previous inequalities: $\|\operatorname{gap}(\mathbb{E}[Q])\| \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|$ $\leq \mathbb{E} \| \operatorname{gap}(Q) \|$ $= \mathbb{E} \left\| \tau_{\xi} f - \tau_{\bar{\xi}} f \right\|$ $= \mathbb{E} \left\| \tau_{\xi} (f - \check{f}) \right\|$

ELE NOR

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

- III: monotone and translation invariant.
- From the previous inequalities: $\|\operatorname{gap}(\mathbb{E}[Q])\| \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|$ $\leq \mathbb{E} \| \operatorname{gap}(Q) \|$ $= \mathbb{E} \left\| \tau_{\xi} f - \tau_{\xi} f \right\|$ $= \mathbb{E} \left\| \tau_{\xi} (f - \check{f}) \right\|$ $= \mathbb{E} \| f - \check{f} \|$

ELE NOR

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

- $\|\cdot\|$: monotone and translation invariant.
- From the previous inequalities: 1.0 - $\|\operatorname{gap}(\mathbb{E}[Q])\| \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|$ 0.8 $\leq \mathbb{E} \| \operatorname{gap}(Q) \|$ 0.6 $=\mathbb{E} \| \tau_{\xi} f - \tau_{\xi} f \|$ $\mathbb{E}[Q]$ 0.4 $= \mathbb{E} \left\| \tau_{\xi} (f - \check{f}) \right\|$ $\mathbb{E}[\check{Q}]$ $\mathbb{E}[Q]$ $= \mathbb{E} \| f - \check{f} \|$ 0.2 $= \|f - \check{f}\|$ 0.0 -2-1Ó

4 E b

9

EL OQO

Additive noise Inequality

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

• $\|\cdot\|$: monotone and translation invariant.

• Inequality:

$\left\| \operatorname{gap}(\mathbb{E}\left[Q\right]) \right\| \leqslant \left\| \mathbb{E}\left[\operatorname{gap}(Q)\right] \right\| \leqslant \left\| \operatorname{gap}(f) \right\|.$

Image: A matrix

• Inequality for uniform norm:

 $\left\| \operatorname{gap}(\mathbb{E}\left[Q\right]) \right\|_{\infty} \leqslant \left\| \mathbb{E}\left[\operatorname{gap}(Q)\right] \right\|_{\infty} \leqslant \left\| \operatorname{gap}(f) \right\|_{\infty}.$

- ∢ /⊐ ►

A B A A B A B B B A A A

• Inequality for uniform norm:

```
\|\operatorname{gap}(\mathbb{E}[Q])\|_{\infty} \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|_{\infty} \leq \|\operatorname{gap}(f)\|_{\infty}.
```

• Improvement: probability of ξ being inside the support of gap(f) may be small.

Theorem

$$\|\operatorname{gap}(\mathbb{E}[Q])\|_{\infty} \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|_{\infty} \leq \kappa \|\operatorname{gap}(f)\|_{\infty}$$

where

$$\kappa = \sup_{x} \mathbb{P}\left[x - \xi \in \operatorname{supp}\operatorname{gap}(f)\right]$$

• Inequality for uniform norm:

```
\|\operatorname{gap}(\mathbb{E}[Q])\|_{\infty} \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|_{\infty} \leq \|\operatorname{gap}(f)\|_{\infty}.
```

• Improvement: probability of ξ being inside the support of gap(f) may be small.

Theorem

$$\|\operatorname{gap}(\mathbb{E}[Q])\|_{\infty} \leq \|\mathbb{E}[\operatorname{gap}(Q)]\|_{\infty} \leq \kappa \|\operatorname{gap}(f)\|_{\infty}$$

where

$$\kappa = \sup_{x} \mathbb{P}\left[x - \xi \in \operatorname{supp}\operatorname{gap}(f)\right]$$

• κ is small if the distribution of ξ is "scattered enough".

Asymptotic behaviour

Theorem

If gap(f) is integrable and ξ_k are random variables whose densities μ_k are bounded,

 $\left\|\operatorname{gap}(\mathbb{E}\left[Q\right])\right\|_{\infty} \leqslant \left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\|_{\infty} \leqslant \left\|\mu_k\right\|_{\infty} \left\|\operatorname{gap}(f)\right\|_1.$

lago Leal de Freitas

Convexification by Averages

November 11, 2019 21 / 56

Theorem

If gap(f) is integrable and ξ_k are random variables whose densities μ_k are bounded,

 $\left\|\operatorname{gap}(\mathbb{E}\left[Q\right])\right\|_{\infty} \leqslant \left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\|_{\infty} \leqslant \left\|\mu_k\right\|_{\infty} \left\|\operatorname{gap}(f)\right\|_1.$

• This means that if

 $\|\mu_k\|_{\infty} \to 0,$

the expected function $\mathbb{E}[Q]$ becomes asymptotically convex.

Additive noise Asymptotic behaviour

• $\xi_h \sim U[-h,h]$

$$\bullet \ \|\mu_h\|_{\infty} = \frac{1}{2h} \to 0$$

Additive noise Asymptotic behaviour

•
$$\xi_h \sim N(m, \sigma^2)$$

•
$$\|\mu_h\|_{\infty} = \frac{1}{\sqrt{2\pi\sigma^2}} \to 0$$

- Question: Why the gap?
- Famous result: $f : (a, b) \rightarrow \mathbb{R}$ twice differentiable,

$$f \text{ is convex } \iff f'' \ge 0.$$

A B A A B A B B B A A A

- Question: Why the gap?
- Famous result: $f: (a, b) \to \mathbb{R}$ twice differentiable,

$$f \text{ is convex } \iff f'' \ge 0.$$

ELE DOG

- Question: Why the gap?
- Famous result: $f : (a, b) \rightarrow \mathbb{R}$ twice differentiable,

$$f \text{ is convex } \iff f'' \ge 0.$$

ELE NOR

Idea

Use the negative part of f'' to measure the non-convexity of f.

$$\mathcal{D}(f) := [f'']_{-},$$

where $[x]_{-} = \max\{-x, 0\}.$

Idea

Use the negative part of f'' to measure the non-convexity of f.

$$\mathcal{D}(f) := [f'']_{-},$$

where
$$[x]_{-} = \max\{-x, 0\}.$$

November 11, 2019

Idea

Use the negative part of f'' to measure the non-convexity of f.

$$\mathcal{D}(f) := [f'']_{-},$$

where
$$[x]_{-} = \max\{-x, 0\}.$$

lago Leal de Freitas

Convexification by Averages

November 11, 2019

Idea

Use the negative part of f'' to measure the non-convexity of f.

$$\mathcal{D}(f) := [f'']_{-},$$

where $[x]_{-} = \max\{-x, 0\}.$

Properties:

- $[f'']_{-}$ is identically zero if and only if f is convex,
- $[f'']_{-}$ is always non-negative.

Another approach: second derivative Main inequality

Let Q be a smooth random function,

• Exchanging expected value and derivative:

 $\mathbb{E}\left[Q\right]'' = \mathbb{E}\left[Q''\right].$

Another approach: second derivative Main inequality

Let Q be a smooth random function,

• Exchanging expected value and derivative:

 $\mathbb{E}\left[Q\right]'' = \mathbb{E}\left[Q''\right].$

• Convexity of negative part:

$$\max \left\{ \mathbb{E} \left[Q''(x) \right], 0 \right\}$$

$$\leq \mathbb{E} \left[\max \left\{ Q''(x), 0 \right\} \right], \forall x.$$

November 11, 2019

Another approach: second derivative Main inequality

Let Q be a smooth random function,

Exchanging expected value and derivative:

 $\mathbb{E}\left[Q\right]'' = \mathbb{E}\left[Q''\right].$

• Convexity of negative part:

 $\max \left\{ \mathbb{E} \left[Q''(x) \right], 0 \right\}$ $\leq \mathbb{E} \left[\max \left\{ Q''(x), 0 \right\} \right], \forall x.$

• Therefore:

$$[\mathbb{E}[Q]'']_{-} \leqslant \mathbb{E}[[Q'']_{-}].$$

lago Leal de Freitas

November 11, 2019

ELE NOR

Derivative of cost-to-go

- The optimal value function of a mixed integer program is only **piecewise linear**.
- So its derivatives are not well-defined...

315

Derivative of cost-to-go

- The optimal value function of a mixed integer program is only **piecewise linear**.
- So its derivatives are not well-defined...
- Solution: distributions!

26 / 56

1 =

Derivative of cost-to-go

- The optimal value function of a mixed integer program is only **piecewise linear**.
- So its derivatives are not well-defined...
- Solution: distributions!

• Distribution theory: the second "derivative" of any continuous function is representable by a measure.

고 노
Derivative of cost-to-go

- The optimal value function of a mixed integer program is only **piecewise linear**.
- So its derivatives are not well-defined...
- Solution: distributions!

- Distribution theory: the second "derivative" of **any continuous function** is representable by a measure.
- More: f'' is a non-negative measure $\iff f$ is a convex function.

Another approach: second derivative Decomposition of measures

Hahn-Jordan decomposition

Every (signed) measure μ can be uniquely decomposed as the difference of two non-negative and mutually singular measures:

$$\mu = [\mu]_{+} - [\mu]_{-}$$

Another approach: second derivative Decomposition of measures

Hahn-Jordan decomposition

Every (signed) measure μ can be uniquely decomposed as the difference of two non-negative and mutually singular measures:

$$\mu = [\mu]_{+} - [\mu]_{-}$$

Another non-convexity measure

Let $f\colon (a,b)\to \mathbb{R}$ be a continuous function. It is convex if and only if

$$[f'']_-=0.$$

lago Lea	al de	Freitas
----------	-------	---------

27 / 56

Another approach: second derivative Main inequality

Let Q be a random continuous function.

• It still holds that:

 $[\mathbb{E}[Q]'']_{-} \leqslant \mathbb{E}[[Q'']_{-}].$

lago Leal de Freitas	(
----------------------	---

November 11, 2019

28 / 56

Reduction of non-convexity Additive Noise

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

• $\|\cdot\|$: monotone and translation invariant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

29 / 56

s	Convexification by Averages	November 11, 2019
5	Convexification by Averages	November 11, 2019

lago Leal de Freitas

Reduction of non-convexity Additive Noise

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

• $\|\cdot\|$: monotone and translation invariant.

•
$$f''$$
 controls $\mathbb{E}[Q'']$:
 $\|[\mathbb{E}[Q]'']_{-}\| \leq \|\mathbb{E}[[Q'']_{-}]\|$
 $\leq \|[f'']_{-}\|.$

-

ELE DOG

29 / 56

Reduction of non-convexity Additive Noise

• Let
$$Q(x,\xi) = \tau_{\xi} f(x) = f(x-\xi)$$
.

• $\|\cdot\|$: monotone and translation invariant.

•
$$f''$$
 controls $\mathbb{E}[Q'']$:
 $\|[\mathbb{E}[Q]'']_{-}\| \leq \|\mathbb{E}[[Q'']_{-}]\|$
 $\leq \|[f'']_{-}\|.$

• Uniform norm:

1

$$\left\|\mathbb{E}[Q'']_{-}\right\|_{\infty} \leq \kappa \left\|[f'']_{-}\right\|_{\infty},$$

$$\kappa = \sup_{x} \mathbb{P}\left[x - \xi \in \operatorname{supp}[f'']_{-}\right].$$

∃ >

ELE DOG

Inequalities for gap(f):

• $\operatorname{gap}\left(\mathbb{E}\left[Q\right]\right) \leq \mathbb{E}\left[\operatorname{gap}(Q)\right]$,

Inequalities for $[f'']_{-}$: • $[\mathbb{E}[Q]'']_{-} \leq \mathbb{E}[[Q'']_{-}]$

Inequalities for gap(f):

- $\operatorname{gap}(\mathbb{E}[Q]) \leq \mathbb{E}[\operatorname{gap}(Q)]$,
- Additive noise:

 $\left\|\mathbb{E}\left[\mathrm{gap}(Q)\right]\right\|\leqslant \left\|\mathrm{gap}(f)\right\|,$

Inequalities for $[f'']_{-}$:

- $[\mathbb{E}[Q]'']_{-} \leq \mathbb{E}[[Q'']_{-}]$
- Additive noise:

 $\left\|\mathbb{E}[Q'']_{-}\right\| \leqslant \left\|[f'']_{-}\right\|,$

lago Leal de Freitas

Inequalities for gap(f):

- $\operatorname{gap}(\mathbb{E}[Q]) \leq \mathbb{E}[\operatorname{gap}(Q)]$,
- Additive noise:

 $\left\|\mathbb{E}\left[\mathrm{gap}(Q)\right]\right\| \leqslant \left\|\mathrm{gap}(f)\right\|,$

• Uniform norm:

 $\left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\|_{\infty}\leqslant \kappa \left\|\operatorname{gap}(f)\right\|_{\infty},$

Inequalities for $[f'']_{-}$:

- $[\mathbb{E}[Q]'']_{-} \leq \mathbb{E}[[Q'']_{-}]$
- Additive noise:
 - $\left\|\mathbb{E}[Q'']_{-}\right\| \leqslant \left\|[f'']_{-}\right\|,$
- Uniform norm:

 $\left\|\mathbb{E}[Q'']_{-}\right\|_{\infty} \leqslant \kappa \left\|[f'']_{-}\right\|_{\infty},$

Inequalities for gap(f):

- gap $(\mathbb{E}[Q]) \leq \mathbb{E}[\operatorname{gap}(Q)],$
- Additive noise:

 $\left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\| \leq \left\|\operatorname{gap}(f)\right\|,$

• Uniform norm:

 $\|\mathbb{E}[\operatorname{gap}(Q)]\|_{\infty} \leq \kappa \|\operatorname{gap}(f)\|_{\infty},$

Asymptotic:

$$\left\|\mathbb{E}\left[\operatorname{gap}(Q)\right]\right\|_{\infty} \xrightarrow{\|\mu_k\|_{\infty} \to 0} 0.$$

Inequalities for $[f'']_{-}$:

- $[\mathbb{E}[Q]'']_{-} \leq \mathbb{E}[[Q'']_{-}]$
- Additive noise:
 - $\|\mathbb{E}[Q'']_{-}\| \leq \|[f'']_{-}\|,$
- Uniform norm:
 - $\left\|\mathbb{E}[Q'']_{-}\right\|_{\infty} \leq \kappa \left\|[f'']_{-}\right\|_{\infty},$
- Asymptotic:
 - $\left\|\mathbb{E}[Q'']_{-}\right\|_{\infty} \xrightarrow{\|\mu_k\|_{\infty} \to 0} 0.$

Convex cones

Definition

A pointed convex cone K is a set satisfying

• Containing all rays:

 $\forall \lambda \ge 0, \ x \in K \implies \lambda x \in K.$

• Convexity:

 $x,\,y\in K\implies x+y\in K,$

• Containing no lines:

 $x\in K \text{ and } -x\in K \implies x=0.$

Convexity with respect to a cone

Definition

Every proper convex cone K induces a **partial order** \leq_K compatible with the linear structure and given by

$$a \leq_K b \iff b - a \in K.$$

ELE SQC

Convexity with respect to a cone

Definition

Every proper convex cone K induces a **partial order** \leq_K compatible with the linear structure and given by

$$a \leq_K b \iff b - a \in K.$$

Definition

A function $f: X \to Y$ is convex with respect to a cone $K \subset Y$ if its domain is a convex set and for all $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \leq_K \lambda f(x) + (1 - \lambda)f(y).$$

lago Leal de Freitas

Definition

A non-convexity measure on a set X of functions is an operator $\mathcal{M}: X \to Y$ whose codomain has a conic order \leq_K such that

- $\mathcal{M}(f) = 0 \iff f \text{ is convex};$
- $\mathcal{M}(f) \geq_K 0, \forall f;$

• \mathcal{M} is convex with respect to K.

 $\mathcal{M} = \operatorname{gap}$ with K the cone of non-negative functions:

 $\mathcal{M} = f \mapsto [f'']_{-}$ with K the cone of non-negative measures:

<<p>(日本)

Definition

A non-convexity measure on a set X of functions is an operator $\mathcal{M}: X \to Y$ whose codomain has a conic order \leq_K such that

•
$$\mathcal{M}(f) = 0 \iff f$$
 is convex;

• $\mathcal{M}(f) \geq_K 0, \forall f;$

• \mathcal{M} is convex with respect to K.

 $\mathcal{M} = \text{gap}$ with K the cone of non-negative functions:

•
$$gap(f) = 0 \iff f$$
 is convex,

 $\mathcal{M} = f \mapsto [f'']_{-}$ with K the cone of non-negative measures:

•
$$[f'']_{-} = 0 \iff f$$
 is convex,

<<p>(日本)

Definition

A non-convexity measure on a set X of functions is an operator $\mathcal{M}: X \to Y$ whose codomain has a conic order \leq_K such that

• $\mathcal{M}(f) = 0 \iff f$ is convex;

•
$$\mathcal{M}(f) \ge_K 0, \forall f;$$

• \mathcal{M} is convex with respect to K.

 $\mathcal{M} = \operatorname{gap}$ with K the cone of non-negative functions:

- $gap(f) = 0 \iff f$ is convex,
- gap(f) is non-negative function,

 $\mathcal{M} = f \mapsto [f'']_{-}$ with K the cone of non-negative measures:

•
$$[f'']_{-} = 0 \iff f$$
 is convex,

• $[f'']_{-}$ is non-negative measure,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Definition

A non-convexity measure on a set X of functions is an operator $\mathcal{M}: X \to Y$ whose codomain has a conic order \leq_K such that

• $\mathcal{M}(f) = 0 \iff f$ is convex;

•
$$\mathcal{M}(f) \geq_K 0, \forall f;$$

• \mathcal{M} is convex with respect to K.

 $\mathcal{M} = \operatorname{gap}$ with K the cone of non-negative functions:

- $gap(f) = 0 \iff f$ is convex,
- gap(f) is non-negative function,
- $gap(\mathbb{E}[Q]) \leq \mathbb{E}[gap(Q)].$

 $\mathcal{M} = f \mapsto [f'']_{-}$ with K the cone of non-negative measures:

- $[f'']_{-} = 0 \iff f$ is convex,
- $[f'']_{-}$ is non-negative measure,

•
$$[(\mathbb{E}Q)'']_{-} \leq \mathbb{E}[Q'']_{-}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 通目 のへの

• Jensen's inequality:

```
\mathcal{M}(\mathbb{E}\left[Q\right]) \leqslant \mathbb{E}\left[\mathcal{M}(Q)\right],
```

lago	Leal	de	Fre	itas

• Jensen's inequality:

$$\mathcal{M}(\mathbb{E}[Q]) \leqslant \mathbb{E}[\mathcal{M}(Q)],$$

- Preserved by monotone norms:
 - If $\|\cdot\|$ is K-monotone, $\|\cdot\| \circ \mathcal{M}$ is also a non-convexity measure.

• Jensen's inequality:

$$\mathcal{M}(\mathbb{E}[Q]) \leqslant \mathbb{E}[\mathcal{M}(Q)],$$

- Preserved by monotone norms:
 - If $\|\cdot\|$ is K-monotone, $\|\cdot\| \circ \mathcal{M}$ is also a non-convexity measure.
- Translation invariance: ($Q(x,\xi) = \tau_{\xi}f$)

$$\forall a, \, \mathcal{M}(\tau_a f) = \mathcal{M}(f) \implies \mathbb{E}\left[\mathcal{M}(Q)\right] \leqslant \mathcal{M}(f).$$

• Jensen's inequality:

$$\mathcal{M}(\mathbb{E}[Q]) \leqslant \mathbb{E}[\mathcal{M}(Q)],$$

• Preserved by monotone norms:

If $\|\cdot\|$ is K-monotone, $\|\cdot\| \circ \mathcal{M}$ is also a non-convexity measure.

• Translation invariance: ($Q(x,\xi)=\tau_\xi f$)

$$\forall a, \, \mathcal{M}(\tau_a f) = \mathcal{M}(f) \implies \mathbb{E}\left[\mathcal{M}(Q)\right] \leqslant \mathcal{M}(f).$$

• Uniform bounds: If $\mathcal{M}(f)$ is bounded,

If $\mathcal{M}(f)$ is integrable,

 $\left\|\mathbb{E}\left[\mathcal{M}(Q)\right]\right\|_{\infty} \leqslant \kappa \left\|\mathcal{M}(f)\right\|_{\infty}$

where

$$\kappa = \sup_{x} \mathbb{P}\left[x - \xi \in \operatorname{supp} \mathcal{M}(f)\right]$$

 $\left\|\mathbb{E}\left[\mathcal{M}(Q)\right]\right\|_{\infty} \leqslant \|\mu\|_{\infty} \left\|\mathcal{M}(f)\right\|_{1}$

where μ is the probability density of the random variable.

Hessian's smallest eigenvalue

- Second derivative for \mathbb{R}^n ,
- f is convex \iff its Hessian $D^2 f$ is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of $D^2 f$,

 $\mathcal{R}(f) = [\lambda_1(D^2 f)]_{-}.$

▲ 표 ▶ ▲ 표 ▶ ▲ 표 ■ ● 9 Q @

Hessian's smallest eigenvalue

- Second derivative for \mathbb{R}^n ,
- f is convex \iff its Hessian $D^2 f$ is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of $D^2 f$,

$$\mathcal{R}(f) = [\lambda_1(D^2 f)]_{-}.$$

•
$$\mathcal{R}(f) = 0 \iff f$$
 is convex.

ADA ADA DIN AAA

Hessian's smallest eigenvalue

- Second derivative for \mathbb{R}^n ,
- f is convex \iff its Hessian $D^2 f$ is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of $D^2 f$,

$$\mathcal{R}(f) = [\lambda_1(D^2 f)]_{-}.$$

•
$$\mathcal{R}(f) = 0 \iff f \text{ is convex.}$$

• $\mathcal{R}(f) \ge 0.$

ADA ADA DIN AAA

Hessian's smallest eigenvalue

- Second derivative for \mathbb{R}^n ,
- f is convex \iff its Hessian $D^2 f$ is positive semi-definite.

Non-convexity measure

Negative part of smallest eigenvalue of $D^2 f$,

$$\mathcal{R}(f) = [\lambda_1(D^2 f)]_{-}.$$

•
$$\mathcal{R}(f) = 0 \iff f$$
 is convex.

- $\mathcal{R}(f) \ge 0.$
- Min-max theorem:

$$\lambda_1(D^2 f) = \inf_{\|v\|_2 = 1} v^t(D^2 f) v.$$

lago Leal de Freitas

Convexification by Averages

A B A A B A B B B A A A

Risk-averse convexification

Coherent risk measures

- Expected value is too "neutral".
- Sometimes, we want to be risk-averse.
- Solution: Exchange \mathbb{E} in all formulas for a risk measure.

ELE SOC

Risk-averse convexification

Coherent risk measures

- Expected value is too "neutral".
- Sometimes, we want to be risk-averse.
- Solution: Exchange $\mathbb E$ in all formulas for a risk measure.

Definition

A coherent risk measure is a function ρ satisfying:

- Monotonicity: $X \leq Y \implies \rho(X) \leq \rho(Y)$;
- Translation equivariance: for all $a \in \mathbb{R}$, $\rho(X + a) = \rho(X) + a$;
- Convexity: for all $\lambda \in [0, 1]$,

$$\rho(\lambda X + (1 - \lambda)Y) \leq \lambda \rho(X) + (1 - \lambda)\rho(Y);$$

• Positive homogeneity: for all $t \ge 0$, $\rho(tX) = t\rho(X)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 のの⊙

Examples of coherent risk measures:

► < Ξ ►</p>

三日 のへで

Examples of coherent risk measures:

• Maximum value: $\sup X$;

Maximum among values

4 Th

ELE NOR

Examples of coherent risk measures:

- Maximum value: sup X;
- Expected value: $\mathbb{E}[X]$;

lago Leal de Freitas

Convexification by Averages

November 11, 2019

EL OQO

37 / 56

Examples of coherent risk measures:

- Maximum value: sup X;
- Expected value: $\mathbb{E}[X]$;
- Expectation of largest values;

4 Th

ELE NOR

37 / 56

Examples of coherent risk measures:

- Maximum value: sup X;
- Expected value: $\mathbb{E}[X]$;
- Expectation of largest values;

Dual representation

A coherent risk measure can be written as

$$\rho(X) = \sup_{\mu \in \mathcal{P}} \mathbb{E}^{\mu} \left[X \right]$$

for a given family of probabilities \mathcal{P} .

Risk-averse convexification Main inequality

Let Q be a random function, ρ a coherent risk measure.

• By definition: $\check{Q} \leqslant Q$.

lago Leal de Freitas	Convexification by Averages		Nove	ember	11, 201	19	38 / 56	5
		< □ >	< 🗗 🕨	< ≣ >	<≣>	-21×	୬ ୯ (Ì

Risk-averse convexification Main inequality

Let Q be a random function, ρ a coherent risk measure.

- By definition: $\check{Q} \leqslant Q$.
- Monotonicity:

go Leal de Freitas	Convexification by Averages	November 11, 2019	38 / 56
		· (口) (@) (王) (王) []	= ∽Q@

Risk-averse convexification Main inequality

Let Q be a random function, ρ a coherent risk measure.

- By definition: $\check{Q} \leqslant Q$.
- Monotonicity:

 $\rho(\check{Q})\leqslant\rho(Q).$

• Convex relaxation:

$$\rho(\check{Q}) \leq \check{\rho(Q)} \leq \rho(Q).$$

ъ
Risk-averse convexification Gap inequality

 $\rho(\check{Q})$ and $\widecheck{\rho(Q)}$: underapproximations to $\rho(Q)$.

•
$$\rho(\check{Q}) \leqslant \check{\rho(Q)} \leqslant \rho(Q)$$

lago Leal de Freitas	Convexification by Averages		Νον	/ember	11, 201	9	39 / 56
		< □ >	< @ ▶	<≡>	<≣≯	-21×	୬୯୯

Risk-averse convexification Gap inequality

 $\rho(\check{Q})$ and $\widecheck{
ho(Q)}$: underapproximations to $\rho(Q)$.

- $\bullet \ \rho(\check{Q}) \leqslant \widecheck{\rho(Q)} \leqslant \rho(Q)$
- Rewriting them:

$$\rho(Q)-\widecheck{\rho(Q)}\leqslant\rho(Q)-\rho(\check{Q}).$$

Risk-averse convexification Gap inequality

 $\rho(\check{Q})$ and $\widecheck{\rho(Q)}:$ underapproximations to $\rho(Q).$

- $\bullet \ \rho(\check{Q}) \leqslant \widecheck{\rho(Q)} \leqslant \rho(Q)$
- Rewriting them:

$$\rho(Q) - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\widecheck{Q}).$$

• Subadditivity:

$$\rho(Q) = \rho(Q + \check{Q} - \check{Q})$$

$$\leqslant \rho(Q - \check{Q}) + \rho(\check{Q}).$$

ELE OQO

Risk-averse convexification Gap inequality

 $\rho(\check{Q})$ and $\widecheck{
ho(Q)}$: underapproximations to $\rho(Q)$.

- $\bullet \ \rho(\check{Q}) \leqslant \widecheck{\rho(Q)} \leqslant \rho(Q)$
- Rewriting them:

$$\rho(Q) - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\widecheck{Q}).$$

• Subadditivity:

$$\begin{split} \rho(Q) &= \rho(Q + \check{Q} - \check{Q}) \\ &\leqslant \rho(Q - \check{Q}) + \rho(\check{Q}). \end{split}$$

• Putting it all together:

$$\rho(Q) - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\check{Q}) \leqslant \rho(Q - \check{Q}).$$

Risk-averse convexification

Question

When the uncertainty is additive,

$$Q(x,\xi) = f(x-\xi) = \tau_{\xi} f(x),$$

the results regarding translation invariant norms still hold?

lago Leal de Freitas

Convexification by Averages

November 11, 2019

40 / 56

Risk-averse convexification

Question

When the uncertainty is additive,

$$Q(x,\xi) = f(x-\xi) = \tau_{\xi} f(x),$$

the results regarding translation invariant norms still hold?

Answer

Not in general...

lago Leal de Freitas

> < = > = = < < <

Counterexample

• Expected value: (always)

 $\left\| \operatorname{gap}(\mathbb{E}\left[Q\right]) \right\| \leqslant \left\| \mathbb{E}\left[\operatorname{gap}(Q)\right] \right\| \leqslant \left\| \operatorname{gap}(f) \right\|.$

• Risk measures: (always)

 $\left\| \operatorname{gap}(\rho(Q)) \right\| \leqslant \left\| \rho(\operatorname{gap}(Q)) \right\|.$

Counterexample

• Expected value: (always)

 $\left\| \operatorname{gap}(\mathbb{E}\left[Q\right]) \right\| \leqslant \left\| \mathbb{E}\left[\operatorname{gap}(Q)\right] \right\| \leqslant \left\| \operatorname{gap}(f) \right\|.$

• Risk measures: (always)

 $\left\| \operatorname{gap}(\rho(Q)) \right\| \leqslant \left\| \rho(\operatorname{gap}(Q)) \right\|.$

• Risk measures: (possible)

 $\left\| \operatorname{gap}(\rho(Q)) \right\| \geqslant \left\| \operatorname{gap}(f) \right\|.$

Counterexample

• Expected value: (always)

 $\left\| \operatorname{gap}(\mathbb{E}\left[Q\right]) \right\| \leqslant \left\| \mathbb{E}\left[\operatorname{gap}(Q)\right] \right\| \leqslant \left\| \operatorname{gap}(f) \right\|.$

• Risk measures: (always)

 $\left\| \operatorname{gap}(\rho(Q)) \right\| \leqslant \left\| \rho(\operatorname{gap}(Q)) \right\|.$

• Risk measures: (possible)

 $\left\| \operatorname{gap}(\rho(Q)) \right\| \geqslant \left\| \operatorname{gap}(f) \right\|.$

• Counterexample:

$$f(x) = \min \{ (x-2)^2, (x+2)^2 \}$$

$$\rho(X) = \sup_{\xi = \pm \frac{1}{2}} X$$

lago Leal de Freitas

Convexification by Averages

November 11, 2019

41 / 56

Counterexample

lago Leal de Freitas

Convexification by Averages

<ロ> <問> < 回> < 回> < 回> < 回> < 回> < 回< の<()</p> November 11, 2019

42 / 56

Counterexample

lago Leal de Freitas

Convexification by Averages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで November 11, 2019

42 / 56

- 6

4

2

| 0

4

Counterexample

<ロ> <問> < 回> < 回> < 回> < 回> < 回> < 回< の<()</p> November 11, 2019

42 / 56

- 6

4

2

| 0

Counterexample

lago Leal de Freitas

Convexification by Averages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへで November 11, 2019

42 / 56

Counterexample

• Filled areas:

$$\|\operatorname{gap}(f)\|_1 = \frac{16}{3},$$

$$\|gap(\rho(Q))\|_1 = \frac{22}{3}$$

Image: A matrix

▲ E ▶ ▲ E ▶ E = 9 Q Q

Counterexample

• Filled areas and max heights:

$$\|gap(f)\|_1 = \frac{16}{3},$$

 $\|gap(f)\|_{\infty} = 4,$

$$\|gap(\rho(Q))\|_1 = \frac{22}{3}$$

 $\|gap(\rho(Q))\|_{\infty} = 3.75$

→

三日 のへの

Risk-averse convexification

Question

When the uncertainty is additive,

$$Q(x,\xi) = f(x-\xi) = \tau_{\xi} f(x),$$

the results regarding translation invariant norms still hold?

Answer

Not in general...

> < = > = = < < <

Risk-averse convexification

Question

When the uncertainty is additive,

$$Q(x,\xi) = f(x-\xi) = \tau_{\xi} f(x),$$

the results regarding translation invariant norms still hold?

Answer

Not in general... but yes for the uniform norm!

lago Leal de Freitas

Let
$$Q(x,\xi) = f(x-\xi) = \tau_{\xi}f(x)$$
.

• Always valid inequalities:

$$\begin{split} \rho(Q) - \widecheck{\rho(Q)} &\leqslant \rho(Q) - \rho(\check{Q}) \\ &\leqslant \rho(Q - \check{Q}). \end{split}$$

44 / 56

三日 のへの

Let
$$Q(x,\xi) = f(x-\xi) = \tau_{\xi}f(x)$$
.

• Always valid inequalities:

$$\begin{split} \rho(Q) & - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\check{Q}) \\ \leqslant \rho(Q - \check{Q}). \end{split}$$

• Uniform norm:

44 / 56

三日 のへの

Let
$$Q(x,\xi) = f(x-\xi) = \tau_{\xi}f(x)$$
.

• Always valid inequalities:

$$\begin{split} \rho(Q) & - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\check{Q}) \\ \leqslant \rho(Q - \check{Q}). \end{split}$$

• Uniform norm:

1.4 1.2 1.0 0.8

0.6

 $\rho(Q)$

ELE DOO

44 / 56

Let
$$Q(x,\xi) = f(x-\xi) = \tau_{\xi}f(x)$$
.

• Always valid inequalities:

$$\begin{split} \rho(Q) & - \widecheck{\rho(Q)} \leqslant \rho(Q) - \rho(\check{Q}) \\ \leqslant \rho(Q - \check{Q}). \end{split}$$

• Uniform norm:

$$\begin{aligned} \|\rho(Q) - \widetilde{\rho(Q)}\|_{\infty} &\leq \|\rho(Q) - \rho(\check{Q})\|_{\infty} \overset{0.2}{\underset{\leq}{\overset{\circ}{=}}} \\ &\leq \|\rho(Q - \check{Q})\|_{\infty} \overset{0.2}{\underset{=}{\overset{\circ}{=}}} \\ &\leq \|f - \check{f}\|_{\infty} \end{aligned}$$

1.0 -

0.8

0.6

0.4

 $\rho(Q) - \rho(\check{Q})$

→

ELE DOG

2

Application to cutting-planes algorithms

- Convex: approximations by cuts
- Non-convex: Construct better approximations from

$$\rho(\check{Q}) \leqslant \widecheck{\rho(Q)} \leqslant \rho(Q).$$

• Integrate into Stochastic Dual Dynamic Programming.

▲ ∃ ► ∃ = √Q ∩

• Convex:

$$g(x) = \max_{\substack{a,b\\ \text{s.t.}}} a^{\top}x - b$$

s.t. $a^{\top}y - b \leq f(y), \forall y.$

lago	Leal	de	Frei	tas

November 11, 2019

三日 のへの

46 / 56

• Convex:

$$g(x) = \max_{\substack{a,b\\ \text{s.t.}}} a^{\top}x - b$$

s.t. $a^{\top}y - b \leq f(y), \forall y.$

lago Lea	l de	Freitas
----------	------	---------

November 11, 2019

46 / 56

三日 のへの

November 11, 2019

46 / 56

Only convex relaxation is approximable.

▲ ∃ ► ∃ = √Q ∩

46 / 56

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

> < = > = = < < <

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

Standard method

- Calculate a cut for each scenario,
- Approximate via average cut.

▶ < 토 ▶ 토 = のへで</p>

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

- Calculate a cut for each scenario,
- Approximate via average cut.

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

- Calculate a cut for each scenario,
- Approximate via average cut.

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

- Calculate a cut for each scenario,
- Approximate via average cut.

What we want

Approximate $\mathbb{E}[Q]$ by cuts.

- Calculate a cut for each scenario,
- Approximate via average cut.

Question

Why that cut was not tight?

Question

Why that cut was not tight?

• Remember:

$$\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right].$$

Question

Why that cut was not tight?

• Remember:

$$\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right].$$

- Cut for scenario ξ^i is only tight for $\check{Q}(\cdot,\xi^i)$.
- Average cut: only tight for $\mathbb{E}[\check{Q}]$.

Question

Why that cut was not tight?

• Remember:

$$\mathbb{E}\left[\check{Q}\right] \leqslant \widecheck{\mathbb{E}\left[Q\right]} \leqslant \mathbb{E}\left[Q\right].$$

- Cut for scenario ξ^i is only tight for $\check{Q}(\cdot,\xi^i)$.
- Average cut: only tight for $\mathbb{E}[\check{Q}]$.

Question

How to directly approximate $\mathbb{E}[Q]$ by cuts?

Cost-to-go function:

$$Q(x,\xi) = \min_{y} c^{\top}x$$

s.t. $Ax + By = b$
 $y \ge 0$
 $y \in \mathbb{R}^{n} \times \mathbb{Z}^{k}.$

lago Lea	l de	Frei	tas
----------	------	------	-----

→ ∃ →

EL OQO

Question

How to directly approximate $\mathbb{E}[Q]$ by cuts?

Finite number of scenarios:

$$Q(x,\xi^{i}) = \min_{\substack{y_{i} \\ \text{s.t.}}} c_{i}^{\top}y_{i}$$

s.t. $A_{i}x + B_{i}y_{i} = b_{i}$
 $y_{i} \ge 0$
 $y_{i} \in \mathbb{R}^{n} \times \mathbb{Z}^{k}.$

lago Leal de Freitas

Convexification by Averages

November 11, 2019

49 / 56

▶ ▲ 토 ▶ 토 = ● ○ ○

Question

How to directly approximate $\mathbb{E}[Q]$ by cuts?

Average over all scenarios:

$$\mathbb{E}\left[Q(x,\xi)\right] = \sum_{i=1}^{N} p_i \min_{\substack{y_i \\ \text{s.t.}}} c_i^\top y_i$$

s.t. $A_i x + B_i y_i = b_i$
 $y_i \ge 0$
 $y_i \in \mathbb{R}^n \times \mathbb{Z}^k.$

49 / 56

Question

How to directly approximate $\mathbb{E}[Q]$ by cuts?

Build a linked program:

$$\mathbb{E}\left[Q(x,\xi)\right] = \min_{\substack{y_1,\dots,y_N\\ \text{s.t.}}} \sum_{i=1}^N p_i c_i^\top y_i$$

s.t. $A_i x + B_i y_i = b_i$, for $i = 1,\dots,N$
 $y_i \ge 0$, for $i = 1,\dots,N$
 $y_i \in \mathbb{R}^n \times \mathbb{Z}^k$, for $i = 1,\dots,N$.

lago Leal de Freitas

Convexification by Averages

November 11, 2019

49 / 56

> < = > = = < < <

Question

How to directly approximate $\mathbb{E}[Q]$ by cuts?

Build a linked program:

$$\mathbb{E}\left[Q(x,\xi)\right] = \min_{\substack{y_1,\dots,y_N\\ \text{s.t.}}} \sum_{i=1}^N p_i c_i^\top y_i$$

s.t. $A_i x + B_i y_i = b_i$, for $i = 1,\dots,N$
 $y_i \ge 0$, for $i = 1,\dots,N$
 $y_i \in \mathbb{R}^n \times \mathbb{Z}^k$, for $i = 1,\dots,N$.

• Cuts for this problem can be tight for $\mathbb{E}[Q]!$

Multi-stage non-convex program,

$$Q_{t-1}(x_{t-1},\xi_t) = \min_{\substack{x_t,u_t \\ \text{s.t.}}} |x_t| + \mathbb{E} \left[Q_t(x_t,\xi_{t+1}) \right]$$

s.t. $x_t = x_{t-1} + \xi_t + u_t$
 $u_t \in \{-1,1\}.$

SDDP + strenghtened Benders cuts.

lago Leal de Freitas

Convexification by Averages

lago Leal de Freitas

Convexification by Averages

$$\begin{aligned} Q_t(v_{t-1},\xi_t) &= \min_{v_t,q_t,s_t,g_t,df_t,f_t,z_t} & c^\top g_t + g_{df}^\top df_t + \beta \bar{Q}_{t+1}(v_t) \\ \text{s.t.} & v_t = v_{t-1} + \xi_t - q_t - s_t, \\ & q_t + M_I g_t + df_t + M_D f_t = d_t, \\ & 0 \leqslant v_t \leqslant \bar{v}, \quad 0 \leqslant q_t \leqslant \bar{q}, \quad 0 \leqslant s_t \\ & 0 \leqslant g_t \leqslant \bar{g}, \quad 0 \leqslant f_t \leqslant \bar{f}, \quad 0 \leqslant df_t, \\ & v_t \geqslant (1-z_t) v_{\mathsf{MinOp}}, \\ & g_t \geqslant z_t g_0, \\ & z_t \in \{0,1\}^n. \end{aligned}$$

- 500 iterations;
- 12 stages;
- $v_t \in \mathbb{R}^2$.

lago Leal de Freitas

November 11, 2019

<=> = = <<<>><</></></>

52 / 56

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	759	16854
Iterations	500	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	14.44	8.19

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	759	16854
Iterations	500	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	14.44	8.19

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	759	16854
Iterations	500	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	14.44	8.19

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	18154	16854
Iterations	4000	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	13.79	8.19

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	18154	16854
Iterations	4000	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	13.79	8.19

Computational experiments

Table: Results for non-convex model with 2 subsystems.

	Cut types	
	Decomposed	Linked
Time (seconds)	18154	16854
Iterations	4000	500
Memory (GB)	0.418	1.089
Calculated cost (Bi R\$)	10.410	11.170
Simulated cost (Bi R\$)	12.227	12.209
Gap (%)	13.79	8.19

Future works

- Non-convexity measures: results for risk measures;
- Linked formulation: Large-scale problems;
- Linked formulation: linking only parts of the scenario tree.

Thank you!

lago Leal de Freitas

Convexification by Averages

<ロ> <問> < 回> < 回> < 回> < 回> < 回> < 回< の<()</p> November 11, 2019

56 / 56

Conditional value-at-risk

Definition

The conditional value-at-risk is the coherent risk measure given by

$$\mathtt{CVaR}_{\alpha}[X] = \inf_{z \in \mathbb{R}} z + \frac{1}{1-\alpha} \mathbb{E}[[X-z]_+]$$

Linked formulation:

$$\begin{aligned} \mathtt{CVaR}_{\alpha}[Q](x) &= \min_{z,t,y} \quad z + \frac{1}{1-\alpha} \sum_{i=1}^{N} p_i t_i \\ \text{s.t.} \quad c_i^\top y_i \leqslant t_i + z, \qquad \text{for } i = 1, \dots, N \\ A_i x + B_i y_i = b_i, \qquad \text{for } i = 1, \dots, N \\ y \geqslant 0, \ t \geqslant 0, \ z \in \mathbb{R}. \end{aligned}$$

→ < ∃ →</p>

EL OQO