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Two-stage problems
Convex case

A two-stage linear program is

min
x

cJ1 x`Qpxq
s.t. A1x “ b1

x ě 0,

where the cost-to-go function is

Qpxq “ min
y

cJy
s.t. Ax`By “ b

y ě 0.
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Figure: Example of cost-to-go.
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Two-stage problems
Non-convex case

A two-stage mixed integer linear program is

min
x

cJ1 x`Qpxq
s.t. A1x “ b1

x ě 0,

where the cost-to-go function is

Qpxq “ min
y

cJy
s.t. Ax`By “ b

y ě 0
y P Rn ˆ Zk. ´3 ´2 ´1 0 1 2 3
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Stochastic programs
Future is uncertain

Cost-to-go Q: random function.

First stage:

min
x

cJ1 x` E rQpx, ξqs
s.t. A1x “ b1

x ě 0.

Uncertainty ξ “ pcJ, A,B, bq:

Qpx, ξq “ min
y

cJy
s.t. Ax`By “ b

y ě 0
y P Rn ˆ Zk.
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Figure: Random cost-to-go.
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Figure: Expected cost-to-go.
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Average of non-convex functions

Question
What is a characterization of the expected cost-to-go?

Average of convex functions is convex.
For non-convex functions:

it may also be!

E
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Non-convexity reduction
Uniform noises
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Non-convexity reduction
Gaussian noises
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Measuring the non-convexity of a function

Question
How to rigorously measure the non-convexity of a function?

Idea
A natural approach is to consider the gap between it and its convex
relaxation!
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Measuring the non-convexity of a function
Convex relaxation

Let f be a function.

Its convex relaxation qf is
the largest convex function
everywhere less than f .
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Measuring the non-convexity of a function
Gap function

Define: gappfq “ f ´ qf ;
Notice: the gap is identically zero if and only if f is convex,
gappfq is always non-negative;
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Measuring the non-convexity of a function
Gap comparisons

We can say that f is less non-convex than g if

gappfq ď gappgq.

But their gaps may not be comparable...
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Measuring the non-convexity of a function
Monotone norms

Solution: project on R using a norm ‖¨‖.
Requirement: preserve gap comparisons,

gappfq ď gappgq ùñ ‖gappfq‖ ď ‖gappgq‖ .

Definition
A function norm ‖¨‖ is monotone if for all g, h ě 0,

g ď h ùñ ‖g‖ ď ‖h‖ .

Examples: The uniform norm, all p-norms...
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Interlude: notation for random functions

Random variable: ξ.
Random function: Qpx, ξq.

Convex relaxation qQ: Defined for each realization Qp¨, ξq.
Average function:

E rQs “ x ÞÑ Eξ rQpx, ξqs
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Measuring the non-convexity of a function
Main inequality

Let Q be a random function (such as a cost-to-go function, for example)

By definition: qQ ď Q.

Averages preserve inequalities:

E r qQs ď E rQs .

By definition of convex
relaxation:

E r qQs ď­E rQs ď E rQs .
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Figure: A realization of Q.
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Measuring the non-convexity of a function
Gap inequality

E r qQs and ­E rQs: underapproximations to E rQs.

E r qQs ď­E rQs ď E rQs
Rewriting them:

E rQs ´­E rQs ď E rQs ´ E r qQs

“ E rQ´ qQs .

Expression for gap:

gappE rQsq ď E rgappQqs .

Monotone norm:

‖gappE rQsq‖ ď ‖E rgappQqs‖ ď E ‖gappQq‖ .
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Back to optimization

Common case: cost-to-go is only uncertain on stage transition,

Qpx, ξq “ min
y

cJy
s.t. Ay “ T px´ ξq ` b

y ě 0.

Additive noise: Qpx, ξq “ fpx´ ξq.
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Additive noise

Let Qpx, ξq “ fpx´ ξq.

Question
Is there a relation between the gap of E rQs and the gap of f?

Yes! With one condition: translation invariance.
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Additive noise

The translation operator τa shifts a function by a,

τafpxq “ fpx´ aq.

A function norm is translation invariant if

‖f‖ “ ‖τaf‖ .
Examples: Again, uniform norm and all p-norms.
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Additive noise
Inequality

Let Qpx, ξq “ τξfpxq “ fpx´ ξq.
‖¨‖: monotone and translation invariant.

From the previous inequalities:

‖gappE rQsq‖ ď ‖E rgappQqs‖
ď E ‖gappQq‖

“ E ‖τξf ´}τξf‖
“ E ‖τξpf ´ qfq‖
“ E ‖f ´ qf‖
“ ‖f ´ qf‖
“ ‖gappfq‖
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Additive noise
Uniform bounds

Inequality:

‖gappE rQsq‖ ď ‖E rgappQqs‖ ď ‖gappfq‖ .

Inequality for uniform norm:

‖gappE rQsq‖8 ď ‖E rgappQqs‖8 ď ‖gappfq‖8 .

Improvement: probability of ξ being inside the support of gappfq may
be small,

Theorem

‖gappE rQsq‖8 ď ‖E rgappQqs‖8 ď κ ‖gappfq‖8
where

κ “ sup
x

P
“
x´ ξ P supp gappfq

‰

κ is small if the distribution of ξ is “scattered enough”.
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Additive noise
Asymptotic behaviour

Theorem
If gappfq is integrable and ξk are random variables whose densities µk
are bounded,

‖gappE rQsq‖8 ď ‖E rgappQqs‖8 ď ‖µk‖8 ‖gappfq‖1 .

This means that if
‖µk‖8 Ñ 0,

the expected function E rQs becomes asymptotically convex.
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Additive noise
Asymptotic behaviour

ξh „ U r´h, hs ‖µh‖8 “
1
2h Ñ 0

´2 0 2
0.0

0.5

1.0

1.5

2.0
Original function and distribution

´2 0 2
0.0

0.5

1.0

1.5

2.0
Average function
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Additive noise
Asymptotic behaviour

ξh „ Npm,σ2q ‖µh‖8 “
1?
2πσ2

Ñ 0

´2 0 2
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Another approach: second derivative

Question: Why the gap?
Famous result: f : pa, bq Ñ R twice differentiable,

f is convex ðñ f2 ě 0.
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Another approach: second derivative

Idea
Use the negative part of f2 to measure the non-convexity of f .

Dpfq :“ rf2s´,

where rxs´ “ maxt´x, 0u.
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Another approach: second derivative

Idea
Use the negative part of f2 to measure the non-convexity of f .

Dpfq :“ rf2s´,

where rxs´ “ maxt´x, 0u.

Properties:
rf2s´ is identically zero if and only if f is convex,
rf2s´ is always non-negative.
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Another approach: second derivative
Main inequality

Let Q be a smooth random function,

Exchanging expected value and
derivative:

E rQs2 “ E
“
Q2

‰
.

Convexity of negative part:

max
 
E
“
Q2pxq

‰
, 0

(

ď E
”

max
 
Q2pxq, 0

(ı
, @x.

Therefore:

rE rQs2s´ ď E
“
rQ2s´

‰
.

´2 ´1 0 1 2
´1.0

´0.5

0.0

0.5

1.0

1.5

ErQ2s
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Derivative of cost-to-go

The optimal value function of a
mixed integer program is only
piecewise linear.
So its derivatives are not
well-defined...

Solution: distributions!

´4 ´2 0 2 4
´2

´1

0

1

2

3

f

Distribution theory: the second “derivative” of any continuous
function is representable by a measure.
More: f2 is a non-negative measure ðñ f is a convex function.
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Another approach: second derivative
Decomposition of measures

Hahn-Jordan decomposition
Every (signed) measure µ can be uniquely decomposed as the difference of
two non-negative and mutually singular measures:

µ “ rµs` ´ rµs´

Another non-convexity measure
Let f : pa, bq Ñ R be a continuous function. It is convex if and only if

rf2s´ “ 0.
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Another approach: second derivative
Main inequality

Let Q be a random continuous function.

It still holds that:

rE rQs2s´ ď E
“
rQ2s´

‰
.
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Reduction of non-convexity
Additive Noise

Let Qpx, ξq “ τξfpxq “ fpx´ ξq.
‖¨‖: monotone and translation invariant.

f2 controls E rQ2s:∥∥rE rQs2s´∥∥ ď ∥∥E“rQ2s´‰∥∥
ď

∥∥rf2s´∥∥ .
Uniform norm:∥∥ErQ2s´∥∥8 ď κ

∥∥rf2s´∥∥8 ,
κ “ supx P

“
x´ ξ P supprf2s´

‰
.

´2 ´1 0 1 2

0.00
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0.50
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1.00
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2.00 f

ErQs
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Similarities between gappfq and rf2s´
Inequalities for gappfq:

gap pE rQsq ď E rgappQqs,

Additive noise:

‖E rgappQqs‖ ď ‖gappfq‖ ,

Uniform norm:

‖E rgappQqs‖8 ď κ ‖gappfq‖8 ,

Asymptotic:

‖E rgappQqs‖8
‖µk‖8Ñ0
ÝÝÝÝÝÝÑ 0.

Inequalities for rf2s´:
rE rQs2s´ ď E

“
rQ2s´

‰

Additive noise:∥∥ErQ2s´∥∥ ď ∥∥rf2s´∥∥ ,
Uniform norm:∥∥ErQ2s´∥∥8 ď κ

∥∥rf2s´∥∥8 ,
Asymptotic:∥∥ErQ2s´∥∥8 ‖µk‖8Ñ0

ÝÝÝÝÝÝÑ 0.
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Convex cones

Definition
A pointed convex cone K is a set
satisfying

Containing all rays:

@λ ě 0, x P K ùñ λx P K.

Convexity:

x, y P K ùñ x` y P K,

Containing no lines:

x P K and ´x P K ùñ x “ 0. Figure: Example of convex cone.
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Convexity with respect to a cone

Definition
Every proper convex cone K induces a partial order ďK compatible with
the linear structure and given by

a ďK b ðñ b´ a P K.

Definition
A function f : X Ñ Y is convex with respect to a cone K Ă Y if its
domain is a convex set and for all λ P r0, 1s,

fpλx` p1´ λqyq ďK λfpxq ` p1´ λqfpyq.
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Non-convexity measures

Definition
A non-convexity measure on a set X of functions is an operator
M : X Ñ Y whose codomain has a conic order ďK such that

Mpfq “ 0 ðñ f is convex;
Mpfq ěK 0, @f ;
M is convex with respect to K.

M “ gap with K the cone of
non-negative functions:

gappfq “ 0 ðñ f is convex,
gappfq is non-negative function,
gappE rQsq ď E rgappQqs.

M “ f ÞÑ rf2s´ with K the cone of
non-negative measures:

rf2s´ “ 0 ðñ f is convex,
rf2s´ is non-negative measure,
rpEQq2s´ ď ErQ2s´.
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Properties of non-convexity measures

Jensen’s inequality:

MpE rQsq ď E rMpQqs ,

Preserved by monotone norms:
If ‖¨‖ is K-monotone, ‖¨‖ ˝M is also a non-convexity measure.
Translation invariance: (Qpx, ξq “ τξf )

@a, Mpτafq “Mpfq ùñ E rMpQqs ďMpfq.

Uniform bounds:
If Mpfq is bounded,

‖E rMpQqs‖8 ď κ ‖Mpfq‖8

where
κ “ supx P

“
x´ ξ P suppMpfq

‰
.

If Mpfq is integrable,

‖E rMpQqs‖8 ď ‖µ‖8 ‖Mpfq‖1

where µ is the probability density of
the random variable.
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If ‖¨‖ is K-monotone, ‖¨‖ ˝M is also a non-convexity measure.
Translation invariance: (Qpx, ξq “ τξf )

@a, Mpτafq “Mpfq ùñ E rMpQqs ďMpfq.

Uniform bounds:
If Mpfq is bounded,

‖E rMpQqs‖8 ď κ ‖Mpfq‖8

where
κ “ supx P

“
x´ ξ P suppMpfq

‰
.

If Mpfq is integrable,

‖E rMpQqs‖8 ď ‖µ‖8 ‖Mpfq‖1

where µ is the probability density of
the random variable.
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Other examples
Hessian’s smallest eigenvalue

Second derivative for Rn,
f is convex ðñ its Hessian D2f is positive semi-definite.

Non-convexity measure
Negative part of smallest eigenvalue of D2f ,

Rpfq “ rλ1pD2fqs´.

Rpfq “ 0 ðñ f is convex.
Rpfq ě 0.
Min-max theorem:

λ1pD
2fq “ inf

‖v‖2“1
vtpD2fqv.
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Risk-averse convexification
Coherent risk measures

Expected value is too “neutral”.
Sometimes, we want to be risk-averse.
Solution: Exchange E in all formulas for a risk measure.

Definition
A coherent risk measure is a function ρ satisfying:

Monotonicity: X ď Y ùñ ρpXq ď ρpY q;
Translation equivariance: for all a P R, ρpX ` aq “ ρpXq ` a;
Convexity: for all λ P r0, 1s,

ρpλX ` p1´ λqY q ď λρpXq ` p1´ λqρpY q;

Positive homogeneity: for all t ě 0, ρptXq “ tρpXq.
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Coherent risk measures

Examples of coherent risk measures:

Maximum value: supX;
Expected value: E rXs;
Expectation of largest values;

0 2 4 6 8 10
0

5

10

Random values
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Coherent risk measures

Examples of coherent risk measures:
Maximum value: supX;
Expected value: E rXs;
Expectation of largest values;

Dual representation
A coherent risk measure can be written as

ρpXq “ sup
µPP

Eµ rXs

for a given family of probabilities P.
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Risk-averse convexification
Main inequality

Let Q be a random function, ρ a coherent risk measure.

By definition: qQ ď Q.

Monotonicity:

ρp qQq ď ρpQq.

Convex relaxation:

ρp qQq ď ~ρpQq ď ρpQq.

´2 ´1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

Q

Q̌
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Risk-averse convexification
Gap inequality

ρp qQq and ~ρpQq: underapproximations to ρpQq.

ρp qQq ď ~ρpQq ď ρpQq

Rewriting them:

ρpQq ´~ρpQq ď ρpQq ´ ρp qQq.

Subadditivity:

ρpQq “ ρpQ` qQ´ qQq
ď ρpQ´ qQq ` ρp qQq.

Putting it all together:

ρpQq´~ρpQq ď ρpQq´ρp qQq ď ρpQ´ qQq.
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Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qpx, ξq “ fpx´ ξq “ τξfpxq,

the results regarding translation invariant norms still hold?

Answer
Not in general...
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Additive noise
Counterexample

Expected value: (always)

‖gappE rQsq‖ ď ‖E rgappQqs‖ ď ‖gappfq‖ .

Risk measures: (always)

‖gappρpQqq‖ ď ‖ρpgappQqq‖ .

Risk measures: (possible)

‖gappρpQqq‖ ě ‖gappfq‖ .

Counterexample:

fpxq “ min
 
px´ 2q2, px` 2q2

(

ρpXq “ sup
ξ“˘ 1

2

X
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Additive noise
Counterexample
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Risk-averse convexification
Additive Noise

Question
When the uncertainty is additive,

Qpx, ξq “ fpx´ ξq “ τξfpxq,

the results regarding translation invariant norms still hold?

Answer
Not in general...

but yes for the uniform norm!
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Additive Noise
Uniform Norm

Let Qpx, ξq “ fpx´ ξq “ τξfpxq.

Always valid inequalities:

ρpQq ´~ρpQq ď ρpQq ´ ρp qQq
ď ρpQ´ qQq.

Uniform norm:

‖ρpQq ´~ρpQq‖8 ď ‖ρpQq ´ ρp qQq‖8
ď ‖ρpQ´ qQq‖8

ď ‖f ´ qf‖8
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Application to cutting-planes algorithms

Convex: approximations by cuts
Non-convex: Construct better approximations from

ρp qQq ď ~ρpQq ď ρpQq.

Integrate into Stochastic Dual Dynamic Programming.

Iago Leal de Freitas Convexification by Averages November 11, 2019 45 / 56



Approximation by cuts

Convex:

gpxq “ max
a,b

aJx´ b

s.t. aJy ´ b ď fpyq, @y.

Non-convex:

qfpxq “ max
a,b

aJx´ b

s.t. aJy ´ b ď fpyq, @y.
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Only convex relaxation is approximable.
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Approximation by cuts
Stochastic programs

What we want
Approximate E rQs by cuts.

Standard method
Calculate a cut for each scenario,
Approximate via average cut.

E
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Approximation by cuts
Stochastic programs

Question
Why that cut was not tight?

Remember:
E r qQs ď­E rQs ď E rQs .

Cut for scenario ξi is only tight for qQp¨, ξiq.
Average cut: only tight for E r qQs.

E

Cut for Q1 Cut for Q2 Average cut
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Linked formulation

Question

How to directly approximate ­E rQs by cuts?

Cost-to-go function:

Qpx, ξq “ min
y

cJx
s.t. Ax`By “ b

y ě 0
y P Rn ˆ Zk.

Cuts for this problem can be tight for ­E rQs!
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Linked formulation

Question

How to directly approximate ­E rQs by cuts?

Average over all scenarios:

E rQpx, ξqs “
Nÿ

i“1
pi min

yi
cJi yi

s.t. Aix`Biyi “ bi
yi ě 0
yi P Rn ˆ Zk.

Cuts for this problem can be tight for ­E rQs!
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Computational experiments

Multi-stage non-convex program,

Qt´1pxt´1, ξtq “ min
xt,ut

|xt| ` E rQtpxt, ξt`1qs
s.t. xt “ xt´1 ` ξt ` ut

ut P t´1, 1u.

SDDP + strenghtened Benders cuts.
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Computational experiments
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Computational experiments
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Computational experiments
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Computational experiments
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Hydrothermal planning

Qtpvt´1, ξtq “ min
vt,qt,st,gt,df t,ft,zt

cJgt ` gJdfdf t ` βQ̄t`1pvtq

s.t. vt “ vt´1 ` ξt ´ qt ´ st,
qt `MIgt ` df t `MDft “ dt,
0 ď vt ď v̄, 0 ď qt ď q̄, 0 ď st
0 ď gt ď ḡ, 0 ď ft ď f̄ , 0 ď dft,

vt ě p1´ ztq vMinOp,
gt ě zt g0,
zt P t0, 1u

n.

500 iterations;
12 stages;
vt P R2.
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Hydrothermal planning
Computational experiments

Table: Results for non-convex model with 2 subsystems.

Cut types

Decomposed Linked

Time (seconds) 759 16854
Iterations 500 500
Memory (GB) 0.418 1.089
Calculated cost (Bi R$) 10.410 11.170
Simulated cost (Bi R$) 12.227 12.209
Gap (%) 14.44 8.19
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Hydrothermal planning
Computational experiments

Table: Results for non-convex model with 2 subsystems.

Cut types

Decomposed Linked

Time (seconds) 18154 16854
Iterations 4000 500
Memory (GB) 0.418 1.089
Calculated cost (Bi R$) 10.410 11.170
Simulated cost (Bi R$) 12.227 12.209
Gap (%) 13.79 8.19
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Future works

Non-convexity measures: results for risk measures;
Linked formulation: Large-scale problems;
Linked formulation: linking only parts of the scenario tree.
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Thank you!
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Linked formulation
Conditional value-at-risk

Definition
The conditional value-at-risk is the coherent risk measure given by

CVaRαrXs “ inf
zPR z `

1

1´ α
E
“
rX ´ zs`

‰

Linked formulation:

CVaRαrQspxq “ min
z,t,y

z ` 1
1´α

řN
i“1 piti

s.t. cJi yi ď ti ` z, for i “ 1, . . . , N
Aix`Biyi “ bi, for i “ 1, . . . , N
y ě 0, t ě 0, z P R.
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